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Abstract. This paper is a tribute to Robert Bartnik and his work and conjectures on quasi-
local mass. We present a framework in which to clearly analyse Bartnik’s static vacuum extension
conjecture. While we prove that this conjecture is not true in general, it remains a fundamental
open problem to understand the realm of its validity.

In Memory of Robert Bartnik

1. Introduction

This paper is a tribute to Robert Bartnik and his work on quasi-local mass in General Relativity.
I met Robert in person only twice, at the Newton Institute in 2005 and then a few years later
in Oberwolfach and my personal interactions with him were sadly somewhat limited. Robert’s
conjectures on the realization of the quasi-local mass, related to the structure of the space of static
vacuum solutions of the Einstein equations have had a profound impact on a significant portion
of my research over the last 20 years. Personally, I was not trained early in GR and came to
the subject rather indirectly through a study of the geometrization problem for 3-manifolds (the
Thurston conjecture). In that approach to geometrization, a surprising connection arose between
the degeneration of metrics of controlled scalar curvature and the structure of static vacuum Einstein
metrics in 3 dimensions.1 I hope this paper may contribute in a small way to a deeper understanding
and appreciation of the Bartnik quasi-local mass conjectures.

The Bartnik mass of a bounded domain Ω with smooth boundary ∂Ω is a very natural and direct
localization of the global ADM mass mADM . The original definition of Bartnik is the following,
cf. [16], [17]. Let Ω be a 3-dimensional domain with smooth connected boundary ∂Ω (we will
usually assume ∂Ω ' S2) and let gΩ be a smooth Riemannian metric on Ω, smooth up to ∂Ω,
with non-negative scalar curvature, sgΩ ≥ 0. Let (M, g) be an asymptotically flat (AF) extension
of (Ω, gΩ); thus ∂M = ∂Ω and the union Ω ∪M is a smooth, complete AF Riemannian manifold
with non-negative and integrable scalar curvature. Assume in addition that (M, g) has no horizons,
i.e. (M, g) has no minimal surfaces surrounding ∂M . Let PΩ denote the set of such AF extensions
(M, g). The Bartnik mass of the smooth bounded domain (Ω, gΩ) is then defined by

(1.1) mB(Ω, gΩ) = inf{mADM (M, g) : (M, g) ∈ PΩ},

where the infimum is taken over all (M, g) ∈ PΩ.

Bartnik observed in [16], [17] that an AF extension (M, g) of ∂Ω with M̂ = Ω∪M which realizes
the infimum in (1.1) will in general only be Lipschitz along the “seam” ∂Ω = ∂M . By a simple and
elegant argument using the 2nd variational formula for area, he showed that a minimizer should
obey the boundary conditions

(1.2) γ∂Ω = γ∂M , H∂Ω = H∂M ,

1The singularity models of such degeneration are static vacuum Einstein metrics, much like the singularity models
of Ricci flow are Ricci solitons. These two equations are superficially somewhat similar and it would be of interest to
understand any deeper relations between them.
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where γ is the induced metric on the boundary and H is the mean curvature of ∂M with respect
to the unit normal pointing into M , both with respect to gΩ and g respectively. The relation
(1.2) implies that the scalar curvature is defined as a non-negative distribution across the seam
∂M = ∂Ω.2 Standard minimal surface arguments show that if H∂M ≤ 0 then any extension (M, g)
has a horizon, so that it is common practice to assume

(1.3) H = H∂M > 0.

As discussed in more detail in §2, there are several further reasons why the restriction (1.3) is
essential. In the following, we will always assume (1.3), unless explicitly noted otherwise.

The quasi-local data (γ,H) of Ω on ∂Ω = ∂M are now called Bartnik boundary data. There are
a number of modifications or variations of the definition of the Bartnik mass mB; we refer to [28]
and further references therein for a careful and detailed discussion.

By general principles, it is to be expected that an extension (M, g) realizing the infimum in
(1.1) satisfies strong conditions. In [16], [17], Bartnik presented a natural physical argument that
extensions (M, g) realizing the infimum in (1.1) should be solutions of the static vacuum Einstein
equations. Briefly, any dynamical gravitational field carries energy and so mass and so an extension
of minimal mass should have no gravitational dynamics, i.e. be time-independent. For similar
reasons, a minimal-mass extension should have no mass coming from matter sources, and so be
vacuum. A time-independent vacuum solution which is time-symmetric (K = 0) is static vacuum.

The static vacuum Einstein equations are the equations for a pair (g, u) on M where u is a
potential function (forming the lapse function of the space-time M = I ×M) given by

(1.4) uRicg = D2u, ∆u = 0,

where Ricg is the Ricci curvature, D2u is the Hessian of u and ∆u is the Laplacian of u, all with
respect to g. These equations are equivalent to the statement that the space-time metric

(1.5) gM = −u2dt2 + g

is Ricci-flat, i.e. a vacuum solution of the Einstein equations.3 It is important both mathematically
and physically to add the requirements that u > 0 in M and u→ 1 at infinity.

A clearer approach as to why the static vacuum equations (1.4) arise as minimizers was suggested
by Bartnik in [18], following a proposal by Brill-Deser-Fadeev [20] regarding the positive mass
theorem. Thus consider the Regge-Teitelboim Hamiltonian (with zero shift) given by

(1.6) HRT = −
∫
M
usgdvg + 16πmADM ,

where sg = trgRicg is the scalar curvature. The first term corresponds to the Einstein-Hilbert
action while the mass term is introduced to give a well-defined, and in particular differentiable
variational problem on the space of fields. The configuration space of fields is here given by AF
static metrics as in (1.5), but not necessarily vacuum, i.e. pairs (g, u) with u > 0; the AF conditions
are described more precisely in §2. The Hamiltonian HRT is thus a smooth function on such static
pairs (g, u).

Let

C = {g : Rg = 0}.
This is the vacuum constraint set (in the time-symmetric case K = 0). Let C(γ,H) ⊂ C be the
subset where the boundary data (γ,H) induced by g is fixed. A necessary first step in the Bartnik

2Actually this holds for H∂Ω ≥ H∂M and this condition is sometimes used instead of (1.2), cf. [28].
3This holds in both Lorentizian and Riemannian signature.
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program is to prove that C(γ,H) is a smooth (Banach) manifold; this was proved to be the case
in [13]. The Hamiltonian HRT then restricts to be the smooth function

HRT = 16πmADM : C(γ,H) → R
on C(γ,H). Thus, critical points of the ADM mass on C(γ,H) are just the critical points of HRT
on C(γ,H). It is then straightforward to verify that such critical points are exactly static vacuum
Einstein metrics. Further, cf. [13], one has u > 0 everywhere and u → 1 at infinity, at least for
critical points realizing the infimum of mADM on C(γ,H), i.e. the Bartnik mass.

There is a useful analogy, cf. [17], [19], [26], of the Bartnik mass with the gravitational capacity
of a body Ω ⊂ R3 in Newtonian gravity, or a charged body in electrostatics. Here one minimizes
the Dirichlet energy,

(1.7) E(v) =

∫
M
|dv|2,

over M = R3 \Ω with boundary conditions v = 1 at ∂Ω and v → 0 at infinity.4 (One could also set
v′ = 1− v with v′ → 1 at infinity). Classical results show that the infimum of (1.7) is realized by a
unique harmonic function v0, ∆v0 = 0 on M ; v0 represents the gravitational potential of the single
layer ∂Ω. The capacity of Ω, equal to the total mass or charge up to a constant, is then given by

(1.8) E(Ω) = inf E(v) = −
∫
∂M

N(v0),

where N is the unit normal into M at ∂M .
Partly based on the Newtonian analogy, Bartnik [16], [17], made the bold conjecture that a

minimizer (M, g) in (1.1) also always exists and is unique.

Conjecture I (Bartnik Minimization Conjecture). For any given smooth boundary data
(γ,H), H > 0, of a domain Ω, ∂Ω ' S2, the infimum in (1.1) is realized by a unique (up to
isometry) AF extension (M, g), i.e.

mADM (M, g) = mB.

Moreover, there is a positive potential function u > 0 on M ' R3 \ B with u → 1 at infinity such
that the triple (M, g, u) is a solution of the static vacuum Einstein equations (1.4) with boundary
data (γ,H).

The validity of this conjecture would ensure that the Bartnik mass is well-behaved as a function
of the boundary data (γ,H) coming from the solid body (Ω, gΩ). For example, it would follow that
the Bartnik mass is a smooth function of the boundary data (γ,H); in fact the mass would be
effectively computable via the expression

mB =
1

4π

∫
∂M

N(u),

where (M, g, u) is the unique static vacuum extension of (γ,H).
If true, Conjecture I suggests the following conjecture [16], [17], which thus serves as a test of

the minimization conjecture but is also of independent interest in geometric PDE theory.

Conjecture II (Bartnik Static Extension Conjecture). Given smooth boundary data
(γ,H), H > 0, on ∂M ' S2, there exists a unique (up to isometry) AF solution (M, g, u), M '
R3 \ B, u > 0, u → 1 at infinity, of the static vacuum Einstein equations (1.4) which induces the
data (γ,H) at ∂M .

Conjecture II may be considered as a pure PDE problem: it concerns the unique global solvability
of a non-linear elliptic boundary value problem. Conjecture I does not logically imply Conjecture

4In (1.7) and below the volume form will often be dropped from the notation when its choice is obvious.
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II since a static vacuum solution may not minimize the Bartnik mass. Nevertheless, we expect
that any counterexample to Conjecture I leads also to counterexamples to Conjecture II. Of course
counterexamples to Conjecture II are counterexamples to Conjecture I.

The static vacuum Einstein equations are seemingly among the simplest set of geometric (diffeo-
morphism invariant) PDE for a general metric g, either on a Lorentzian or Riemannian 4-manifold.
In the Lorentzian or General Relativity setting, the simplest vacuum Einstein solutions are static,
i.e. time independent with vanishing initial momentum and so have a hypersurface-orthogonal
time-like Killing field.5 Similarly, Einstein metrics on 4-manifolds are of fundametal interest in
Riemannian geometry and the existence of a global non-vanishing Killing field reduces the Einstein
PDE system to the simpler system (1.4) on a 3-manifold M . While the equations (1.4) lie at the
crossroads or intersection of Lorentzian and Riemannian geometry, gaining an understanding of
the space of solutions and of Conjectures I and II has remained very difficult. One could impose
a further symmetry, i.e. Killing field to simplify the problem further to 2 dimensions. This leads
to the class of axi-symmetric or Weyl solutions, discussed further in detail in §4: however, even in
this case, Conjectures I and II remain very challenging.

For Conjecture II, the source of these difficulties is of course the non-linear nature of the PDE
(1.4) and the boundary data (γ,H). This is also a coupled system of PDE, adding significantly to
the complexity. To gain some general perspective, it is worth comparing the global existence and
uniqueness problem for static vacuum Einstein metrics with other natural geometric problems. In
fact, global existence and uniqueness for solutions of nonlinear elliptic geometric PDE is rather rare
and is much more the exception than the rule. The list of examples is huge, so we mention only
the following illustrative examples:

Global existence and uniqueness:
• Kähler-Einstein metrics. Among the few situations where global existence and uniqueness

hold, the most celebrated is Yau’s solution of the Calabi problem for compact Kähler manifolds
with c1 = 0 and the Aubin-Yau theorem in the case c1 < 0, as well as the more recent work of
Chen-Donaldson-Sun in the more difficult positive case c1 > 0. These existence proofs use a version
of the continuity method, discussed briefly in §2.
• Weyl embedding problem. Any smooth metric of positive Gauss curvature on S2 admits a

smooth isometric embedding into R3 as the boundary of a convex body, unique up to rigid motion
of R3. Again, the existence proof of this result by Nirenberg uses the continuity method.

Global existence, non-uniqueness:
• The Yamabe problem. Global existence was established by variational methods through the

combined work of Yamabe, Trudinger, Aubin and Schoen. However, it is well-known that unique-
ness, either of constant scalar curvature metrics or of Yamabe minimizers in a conformal class, fails
in general.
•Minimal varieties. There is a large and very satisfactory theory for existence of minimal varieties

spanning a given boundary in an ambient Riemannian manifold, using either parametric methods
in low dimensions (Plateau problem) or non-parametric methods (geometric measure theory) in all
dimensions. However, it is again well-known that uniqueness fails in many situations.

Failure of global existence and uniqueness:
• Nirenberg problem. A very simple sounding problem is the Nirenberg problem of determining

the existence and uniqueness of metrics on S2 conformal to the round metric with prescribed Gauss
curvature. Here, both existence and uniqueness fail in general and the number of solutions depends
in a very complicated way on the structure of the Gauss curvature function K : S2 → R.

5The focus here is on static case; for recent progress on the more difficult stationary case, cf. [2].
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• Vacuum Einstein constraint equations in GR. The main method of solving these constraint
equations is the conformal method of Lichnerowicz, Choquet-Bruhat and York. Here one has full
existence and uniqueness results for constant mean curvature (CMC) data, but failure of both
existence and uniqueness for data far from CMC data.

One could easily go on and on; but the lesson is that non-linear geometric problems usually have
complicated global behavior.

We note that there is now also a large and growing literature of estimates of the Bartnik mass
mB(γ,H) from below and above in terms of the boundary data (γ,H), as well as comparisons
of mB with other notions of quasi-local mass, such as the Hawking, Brown-York, or Wang-Yau
masses. These estimates and comparisons may be viewed as analogs of the extensive and well-
known estimates of the capacity of a domain Ω ⊂ R3, or of the first eigenvalue λ1 of a compact
Riemannian manifold, in terms of other geometric data.

However, the theory behind the capacity of a domain or of the first eigenvalue of the Laplacian
is simple and easy to establish; they are realized by a harmonic function or a first eigenfunction
whose existence and uniqueness is easy to establish, since the Laplacian is a single scalar, linear
PDE. The focus is this paper is instead on the theory underlying the definition of Bartnik mass, in
particular on the foundational Conjectures I and II. The Bartnik mass formally exists as a number,
but one should understand its structure and global behavior as a function of the boundary data
(γ,H).

In accord with most of the examples discussed above, it turns out that both Conjectures I and
II are false in full generality. For example, we prove:

Theorem 1.1. There is no static vacuum Einstein metric (M, g, u) smooth up to ∂M with boundary
data (γ,H), where γ is any smooth metric on S2 for which the Gauss curvature Kγ is a Morse
function on S2 and

0 < H < H0,

where H0 is a positive constant, sufficiently small depending on γ.

We refer to Theorem 3.5 below for the exact statement. We also discuss in §3 why this non-
existence result also leads to expected local non-uniqueness for Conjecture II. Conjecture I was
previously proved to be false in certain (quite different) situations in [13].

It remains then a fundamental challenge to identify conditions or restrictions on the boundary
data (γ,H) which ensure the validity of the Bartnik Conjectures.

A brief summary of the contents of this paper is as follows. In §2, we discuss the basic framework
in which to analyse Conjecture II and show that the local structures involved are very well behaved.
In §3, we turn to global issues of existence and uniqueness and prove in particular Theorem 1.1. A
large class of relatively explicit examples of static vacuum Einstein metrics are the Weyl metrics,
discussed in detail in §4. Finally, in an Appendix, §5, we prove a regularity result for (local) minimal
surfaces in static vacuum Einstein metrics needed for the proof of Theorem 3.5.

2. Local Behavior

Let B be the set of Bartnik boundary data (γ,H) on S2 with H > 0 as in (1.3). Let E be
the set of isometry classes of static vacuum Einstein solutions with H > 0 at the boundary ∂M .6

Thus E is the set of equivalence classes of AF static vacuum Einstein metrics (M, g, u), modulo the
equivalence relation

(g1, u1) ∼ (g2, u2)

6It is an open question whether E is connected or not. Thus E is understood to be the component containing the
standard flat exterior metric R3 \B3(1), with g the Euclidean metric and u ≡ 1.
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if there is a diffeomorphism ψ : M → M with ψ = Id on ∂M and ψ → Id at infinity, (cf. (2.4)
below), such that ψ∗g2 = ψ∗g1 and ψ∗u2 = u1. One has a natural Bartnik boundary map

(2.1) ΠB : E → B,

(g, u)→ (γ,H).

Thus the static extension Conjecture II is equivalent to the statement that ΠB is a bijection.
This means that the space of solutions (M, g, u) (up to isometry) should be set-theoretically
parametrized by its boundary data (γ,H). However, it is natural to introduce topology at this
point. Well-posedness in PDE also typically assumes stability properties; small perturbations of
the data (boundary data in this situation, initial or initial+boundary data in the case of parabolic
or hyperbolic PDE) implies small perturbations of the solution; this corresponds to continuity of
the inverse map Π−1

B in (2.1).
The set B of boundary data may be naturally topologized in several ways. For convenience, we

choose here the Hölder space topology,

B = Metm,α(S2)× Cm−1,α
+ (S2).

Here Metm,α(S2) is the space of Cm,α Riemannian metrics on S2 and Cm−1,α
+ (S2) is the space of

positive Cm−1,α functions on S2. The space B has the structure of a Banach manifold (an open
subset of a linear Banach space)7.

Next, let Metm,αδ (M) be the space of Cm,α Riemannian metrics g on M ' R3 \ B which are

asymptotically flat of order δ, where δ ∈ (1
2 , 1), i.e. for r sufficiently large,

(2.2) |g − gEucl| ≤ cr−δ, |∂k+αg| ≤ cr−δ−k−α,

1 ≤ k ≤ m. Similarly, let Cm,α+ (M) denote the space of positive potential functions u on M which
are asymptotically flat of order δ:

(2.3) |u− 1| ≤ cr−δ, |∂k+αu| ≤ cr−δ−k−α.

The pair (g, u) assemble to form the static or time-independent metric on the 4-manifoldM, as in
(1.5). A Cm+1,α diffeomorphism ψ : M →M is AF if

(2.4) |ψ − Id| ≤ cr−δ, |∂k+αψ| ≤ cr−δ−k−α,

for 1 ≤ k ≤ m+ 1.
The product Metm,αδ (M)×Cm,α+ (M) then also has the structure of a Banach manifold. Let E ⊂

Metm,αδ (M)×Cm,α+ (M) be the subset of solutions of the static vacuum Einstein equations (1.4) with
H > 0 at ∂M . It is proved in [14] that E is a smooth Banach submanifold of Metm,αδ (M)×Cm,α+ (M).

Moreover, the group Diffm+1,α
1 (M) of Cm+1,α AF diffeomorphisms of M equal to the identity on

the boundary ∂M and asymptotic to Id at infinity as in (2.4), acts smoothly, freely and properly
on E, with a smooth local slice. Consequently, the quotient

(2.5) E = E/Diffm+1,α
1 (M),

representing isometry classes of solutions, is also a smooth Banach manifold.
In addition, the Bartnik boundary map ΠB in (2.1) is a smooth Fredholm map, of Fredholm

index 0, cf. again [14]. Thus the linearization or derivative D(g,u)ΠB at any point (M, g, u) is a
Fredholm map of Banach spaces. This means that the linear map DΠB has closed range and finite

7In place of Cm,a, it is actually better to choose the so-called little Hölder spaces cm,α, i.e. the closure of C∞

in the Cm,α Hölder norm, which has the structure of a separable Banach space; however, this is not an essential
distinction in the discussion to follow.
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dimensional kernel and cokernel. In more detail, let K be the finite dimensional kernel of DΠB at
some point (M, g, u) ∈ E . The closed subspace K admits a closed complement D,

T(g,u)E = D ⊕K,
and similarly the image, W = ImDΠB is a closed complemented subspace of T(γ,H)B. Let C denote
the finite dimensional complement. Then dimC = dimK = k <∞ since DΠB has Fredholm index
0. The restricted map

D(g,u)Π|D : D →W,

is an isomorphism.
If dimK = 0, then DΠB itself is an isomorphism and so the inverse function theorem for Banach

manifolds implies ΠB is a local diffeomorphism near (M, g, u). Suppose dimK = k > 0. Then the
implicit function theorem (also known as the constant rank theorem) for Banach manifolds states
that there is a local submanifold U of codimension k in E , with T(g,u)U ⊕K = T(g,u)E and a local
submanifold V of codimension k in the boundary data space B, with T(γ,H)V = W such that

(2.6) ΠB|U : U → V
is a diffeomorphism. Thus, near any given solution (M, g, u), one has local existence (and local
uniqueness) of solutions, parametrized by boundary data (γ,H) in an open set of a local submanifold
of codimension k in B.

We see then that the local structure of the space of solutions E and the local behavior of the
map ΠB relating solutions with boundary data are both very well behaved. However, this structure
of the mapping ΠB breaks down at the locus H = 0 (minimal surface boundary) basically due to
the black hole uniqueness theorem. To see this, let Ē be the closure of E in the Cm,α norm. This

consists of static vacuum Einstein metrics (M, g, u) with u ≥ 0 on ∂M .8 Similarly, let B̃ be the full
space of boundary data, without the restriction that H > 0. One still has the Bartnik boundary
map

(2.7) ΠB : Ē → B̃,
(M, g, u)→ (γ,H).

Proposition 2.1. Let (M, g, u) be an AF static vacuum Einstein metric in Ē and let Σ be a minimal
surface surrounding ∂M , (possibly Σ = ∂M). Then Σ = ∂M and (M, g, u) is a Schwarzschild
metric with u = 0 on the horizon ∂M .

Proof. This is basically a consequence of the well-known black hole uniqueness theorem [27], [35],
[21] and its extension by an elegant argument of Galloway [24]. We refer also to [31] for a different
proof, (which relies however on the more difficult positive mass theorem).

To begin, without loss of generality, by standard minimal surface arguments we may assume Σ
is outer-minimizing, cf. (3.4) below, and so in particular Σ is a stable minimal surface. By the 2nd

variational formula for area

(2.8)

∫
Σ
|df |2 − (|A|2 + Ric(N,N))f2 ≥ 0,

for all Lipschitz functions f with f ≥ 0; clearly (2.8) then also holds for all Lipschitz functions f .
By the static vacuum equations (1.4), we have

−Ric(N,N) = −u−1NN(u) = u−1∆Σu,

since H = 0, cf. also the line preceding (5.3). Choosing f = u in (2.8) gives∫
Σ
|du|2 + u∆Σu− u2|A|2 ≥ 0,

8It does not really make sense in this framework to consider metrics where “u < 0” somewhere.
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and so by the divergence theorem ∫
Σ
u2|A|2 = 0.

Again, the static vacuum Einstein equations imply that A = 0 at any locus where u = 0. Hence, it
follows that

(2.9) A = 0,

on Σ. If also u = 0 on Σ, then the result follows by the black hole uniqueness theorem, so assume u
is not identically 0 on Σ. Since by the constraint equation (5.1), −2Ric(N,N) = sγΣ , (2.8) becomes∫

Σ
|df |2 +KΣf

2 ≥ 0.

Thus u is a lowest eigenfunction of the operator −∆ +KΣ and hence, (since u is not identically 0),
u > 0 on Σ.

Now consider the (so-called) optical metric ĝ = u−2g on (M, g) exterior to Σ and the normal
exponential map êxpΣ from Σ in the metric ĝ. It is proved in [24] that one has the monotonicity
formula

(2.10)
d

dt
(
H

u
) = −|A|2,

where d/dt is the ĝ-unit tangent to the flow lines of êxpΣ; all other metric quantities in (2.10) are
with respect to g. (The sign for H used here is opposite to that in [24]). By (2.9), d

dt(
H
u ) = 0 at

t = 0 and similarly d2

dt2
(Hu ) = 0 at t = 0. Thus

(2.11)
d3

dt3
(
H

u
) = −2| d

dt
A|2.

This corresponds to the 4th variational formula for area. By the outer-minimizing property the left
side of (2.11) must be non-negative when integrated over Σ. Hence, it follows that

d

dt
A = 0,

at t = 0. By a standard computation, using the fact that A = 0,

d

dt
A = −D2u−RNu = 0,

where RN (X,Y ) = 〈R(N,X)Y,N〉. In 3 dimensions, one has −RN = Ric + Ric(N,N)g, and so
by the static vacuum equations (1.4), it follows that Ric(N,N) = 0. In turn, by the Hamiltonian
constraint (5.1), this gives KΣ = 0, which implies ∆Σu = 0, cf. (5.3). Hence u = const on Σ.
Also N(u) = const on Σ by the divergence constraint (5.4). Thus the Cauchy data for (M, g, u)
at Σ are the trivial data (γ = flat, u = const, A = 0, N(u) = const). It then follows from unique
continuation, or more simply just analyticity (static vacuum solutions with minimal boundary and
u > 0 are analytic up to the boundary), that (M, g) is flat and u is an affine function. This again
gives a contradiction; there are no compact minimal surfaces in R3.

Remark 2.2. Proposition 2.1 is stable in the following sense: if (M, g, u) is a static vacuum Einstein
metric with boundary data (γ,H) and H is sufficiently small, and if the Cm,α norm, m ≥ 4, of
(g, u) up to ∂M is uniformly bounded, then (M, g, u) is close to a Schwarzschild metric gSch(m) in
Ē . The proof of this is the same as that of Proposition 2.1, by taking a sequence of such metrics
with boundary data (γi, Hi)→ (γ, 0).

This statement will be significantly generalized in §3, cf. Theorem 3.5.
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Proposition 2.1 implies

(2.12) (ΠB)−1(Metm,α(S2), 0) = gSch,

i.e. the inverse image of infinite dimensional space Metm,α(S2) × {0} ⊂ B̃ is the 1-dimensional
curve of Schwarzschild metrics. The linearized version of Proposition 2.1 implies that the image of

DgSchΠB has infinite codimension in T B̃ and so is not Fredholm. The Schwarzschild metrics lie at
the boundary or edge of the space E but the relation (2.12) shows this boundary is just a curve,
not a hypersurface as one might expect. This indicates that the local behavior of ΠB must change
significantly on approach to the locus H = 0 away from round metrics; this will be explored and
discussed in more detail in §3.

Note also that the static vacuum equations (1.4) are no longer strictly elliptic (in any gauge) at
regions in the locus {u = 0}; instead the equations become degenerate elliptic. Namely, the leading
order symbol for (1.4) is u∆gij = −2∂i∂ju, ∆u = 0 in a harmonic gauge for g, which is strictly
elliptic only when u > 0. We note also that when H > 0 at the boundary ∂M , a static vacuum
solution (M, g, u), C2 smooth up to ∂M cannot have u = 0 at any point of M or ∂M . Namely, by
(5.3)

∆u+HN(u) =
u

2
(|A|2 −H2 + sγ).

If u ≥ 0 on ∂M and u(p) = 0 at p ∈ ∂M , then at p, ∆u ≥ 0 and N(u) > 0 by the Hopf maximum
principle. However, the right side vanishes at p giving a contradiction if H(p) > 0.

In sum, the map ΠB is Fredholm only where u > 0 up to the boundary, and the requirement
H > 0 at ∂M ensures this condition. All of the above are reasons for enforcing (1.3).

Points (g, u) ∈ E where DΠB is an isomorphism are called regular or non-degenerate points of
the map ΠB. Recall that boundary data (γ,H) ∈ B is a regular value of ΠB if every point in the
inverse image (ΠB)−1(γ,H) is a regular point of ΠB in E . By the Smale-Sard theorem [37], the
regular values are generic (of second Baire category) in the target B. (Note that, by fiat, the empty
set is a regular value). A point (g, u) is singular (for ΠB) if it is not a regular point.

An important locus of singularities of a smooth index 0 Fredholm map F : M → N between
Banach manifolds is a fold locus. This is given by a (local) hypersurface H ⊂M (a codimension 1
submanifold) where H consists of singular points of F with dimKerDF = 1 and the map F is 2-1 in
an open neighborhood of H inM off of H; compare with (2.6), (2.13) and the discussion following
(3.21) below. In the context of (Riemannian) Einstein metrics, the most well-known example of
such fold behavior is the Hawking-Page phase transition for the AdS Schwarzschild metrics [25].
Similar fold behavior holds for the the interior Dirichlet boundary map for Ricci-flat Schwarzschild
metrics [1]. Such behavior also occurs for the general interior Bartnik boundary map [9], i.e. for
the analog of (2.1) where M is replaced by a compact (interior) manifold with boundary.

It is natural to conjecture that generically, i.e. at least on an open dense subset of E , the lin-
earization DΠB is an isomorphism, i.e. the regular or non-degenerate points in the domain E are
generic. This issue has been widely considered and analysed in many other geometric PDE (and
ODE) problems. For example, for geodesics in Riemannian manifolds, this is the statement that
the regular points of the exponential map expp are open and dense in TpM ; generically, two points
in M are not conjugate along a geodesic, i.e. there are no Jacobi fields vanishing at the end points.
Similarly for minimal submanifolds, for a generic boundary in fixed Riemannian manifold, (or for
a generic Riemannian metric), minimal surfaces have no Jacobi fields vanishing on the boundary.

In fact, based on an analogy with the monotonicity of the first eigenvalue of the Laplacian on
bounded domains with Dirichlet boundary condition with respect to inclusion of domains, White
[40] proved that the set of minimal immersions with non-trivial Jacobi fields vanishing on the
boundary is of codimension 1 in the space of all minimal immersions (M,∂M)→ (N, gN ). This is
of course a much stronger conclusion than generic. The proof in [40] uses a variational approach,
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together with a normal interior variation of the domain of the minimal surface and the Calderon
unique continuation theorem for elliptic systems. A similar result was proved for the interior
Bartnik problem in [9] using an analogous approach, but based on a unique continuation property
for Einstein metrics and their linearization; this is considerably more difficult partly due to gauge
issues.

Using essentially this same approach but with some modifications, An-Huang [3], [4] have recently
shown that the regular points of ΠB are indeed generic in many cases.

As discussed above, while the spaces E , B and the boundary map ΠB are well-behaved locally,
this does not go very far towards resolving Conjecture II, the static vacuum extension conjecture.
Consider for instance a very simple toy model. In place of E , consider the circle S = S1(r) ⊂ R2 of
radius r about the origin. Similarly, replace B by the x-axis and the boundary ΠB by the projection
π to the x-axis:

(2.13) π : S → R,

π(x, y) = x.

For r small, the image of π in R is small; for most values in R there is no solution. The space of
boundary data realized by solutions increases as r increases, but for any r < ∞, there is still a
large space of boundary data without solutions. Only in the limit r →∞ where S1(r) becomes R
and π becomes the identity (after suitable translations) does the situation improve. In all cases of
course, the local structures involved are very well-behaved. There are only 2 singular or degenerate
points, both fold points, at x = ±r; all other points in S are regular.

In the example above, the degree of π is 0, so there are generically either 2 distinct solutions or
no solutions. On the other hand, consider the following simple modification. Let T be the graph
of the function tan(x) over the interval (−π

2 ,
π
2 ) and consider

(2.14) π : T → R,

π(x, y) = x.

Then either there is a unique solution y to π(x, y) = x or there are no solutions. The degree of π
here is not well-defined. This is because the map π is no longer proper; the issue of properness is
fundamental in understanding the global behavior of non-linear mappings and will be discussed in
more detail for the map ΠB in §3.

One of the most effective methods of proving global existence and uniqueness is the continuity
method, as mentioned above in the works on the solution to the Calabi conjecture and the solution
to the Weyl embedding problem. In the current context, this method can be described as follows.
Choose boundary data for which a static vacuum solution is known to exist; for instance (γ0, H0) =
(γ+1, 2), which is realized by the exterior flat metric M = R3 \ B3(1), g = gEucl is the Euclidean
metric and u = 1. Given any boundary data (γ,H) ∈ B, choose a path from (γ0, H0) to (γ,H) in
B; for instance

(γs, Hs) = (1− s)(γ0, H0) + s(γ,H).

To prove there is a solution in E with boundary data (γ,H), one shows that the set of s for which
there is a solution is both open and closed in [0, 1]. The openness property amounts to showing
that solutions (M, gs, us) with ΠB(M, gs, us) = (γs, Hs) are always non-degenerate. In case the
degeneracy locus is non-empty, for example a collection of fold hypersurfaces in E , then a very
useful replacement or generalization of the method of continuity is the degree theory, e.g. the
Leray-Schauder degree or more generally the Smale degree [37]. This does not require the non-
degeneracy property, but to establish a well-defined degree does require the properness of the map
ΠB, which is the analog of the closedness condition above.
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3. Global Behavior

The key issue in understanding the global behavior of ΠB is to understand how well the boundary
data (γ,H) controls the behavior of any possible solution (M, g, u) with such boundary data. As
always with elliptic problems, this requires apriori estimates on the geometry of solutions (M, g, u)
in terms of (γ,H). Proving such estimates is equivalent to proving that ΠB is a proper map, i.e. the
inverse image (ΠB)−1(K) of compact sets K ⊂ B are compact sets in the domain E . We point out
that Fredholm maps are always locally proper, cf. [37].

As a starting point of this analysis, we recall that one does have optimal apriori estimates of
solutions (M, g, u) in the interior of M , away from ∂M . Let t(x) = distg(x, ∂M) be the distance
function to the boundary ∂M and let ν = log u. We recall that, by definition, u > 0 in M . By [5],
there is a universal constant K <∞ such that

(3.1) |Rm|(x) ≤ K

t2(x)
, |dν(x)| ≤ K

t(x)
,

for any static vacuum solution (M, g, u); here Rm is the Riemann curvature tensor of g. The esti-
mates (3.1) are scale invariant and such scale-invariant estimates also hold for all higher derivatives.
It follows (from the Cheeger-Gromov compactness theorem) that if one has weak uniform control
on the global geometry of the locus L1 = {t = 1} in (M, g), namely a lower bound on its area and
upper bound on its diameter,

(3.2) areagL1 ≥ v > 0, diamgL1 ≤ D <∞,
then one obtains global uniform control on (M, g, u) away from ∂M . Under the bounds (3.2), any
sequence of static vacuum solutions (M, gi, ui) ∈ E has a subsequence which converges, in C∞δ and
away from the boundary ∂M and modulo AF diffeomorphisms, to a limit AF static vacuum solution
(M, g, u), cf. [6], [14] for further details. In other words, one has good compactness properties away
from the boundary - irrespective of the boundary conditions.

Thus, the issue is the behavior of solutions arbitrarily near the boundary ∂M .

The conjecture that ΠB in (2.1) is a bijection (Conjecture II) suggests the closely related con-
jecture that ΠB is a diffeomorphism. However, this turns out not to be the case. It was observed
by the author in [14] that ΠB is not a proper map, and so in particular is not a homeomorphism.
The reason for this is simple: the structure of a manifold-with-boundary (M,∂M) may degenerate
with uniform control on the boundary data (γ,H). In other words, the embedded boundary ∂M
in M may “degenerate” from an embedding to an immersion.

As a simple illustration, consider for instance any fixed static vacuum metric (M, g, u) with
boundary ∂M and boundary data (γ,H) ∈ B. Let Σ be any embedded 2-sphere S2 ⊂ M homolo-
gous to the boundary ∂M with HΣ > 0. One may then cut off M at Σ to obtain a new exterior
solution M ′ with ∂M ′ = Σ and corresponding boundary data (γΣ, HΣ) ∈ B at Σ. Suppose however
Σ is an immersed 2-sphere in (M, g) homologous to ∂M . This again has induced “boundary” data
(γΣ, HΣ) from (M, g), but Σ is not the natural smooth boundary of an exterior manifold-with-
boundary M ′. If the immersed surface Σ is isotopic to the boundary ∂M in M with HΣ > 0, then
at least in many cases one may easily find curves of spheres Σs in (M, g) which smoothly deform an
embedded sphere to an immersed sphere, with boundary data (γs, Hs) smoothly controlled for all
s and with Hs remaining uniformly positive. In this process, the ambient metric g and potential u
remain fixed up to ∂M ; only the domain Ms on which they are defined is changing. Thus, control of
the “boundary data” (γs, Hs) does not control the structure of the manifold-with-boundary Ms. On
the other hand, when (M, g) is an extension of a smooth interior body (Ω, gΩ), the corresponding
interior geometry (Ωs, gΩ,s) is well-controlled and does not degenerate at all.

Remark 3.1. It was proved in [13] that this type of degeneration leads to counterexamples to the
Bartnik minimization conjecture, Conjecture I. There exists a large family of immersed spheres S2
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in R3 whose boundary data (γ,H) ∈ B are not realized by a static vacuum extension of minimal
mass; cf. also [11] for further discussion and conjectures.

Remark 3.2. One immediate consequence of this degeneration is a kind of symmetry breaking
of the gauge group. As discussed in §2, the natural gauge group for the Bartnik boundary value
problem is the group Diff1(M) of AF diffeomorphisms of M equal to the identity on the boundary
∂M . This corresponds to isometric metrics, and preserves the boundary data (γ,H). Suppose then
(γ,H) are realized as boundary data of a static vacuum solution (M, g, u), with ∂M embedded.
Then clearly so are (ϕ∗γ, ϕ∗H), for any diffeomorphism ϕ of ∂M ' S2. Namely any such diffeo-
morphism extends to an AF diffeomorphism, also called ϕ, of M and the triple (M,ϕ∗g, ϕ∗u) is
a solution of the static vacuum Einstein equations with boundary data (ϕ∗γ, ϕ∗H). If however Σ
is merely an immersed “boundary” in a larger space M , then this may not be the case. It is no
longer clear that if (γ,H) are the boundary data of Σ, then (ϕ∗γ, ϕ∗H) are realized as boundary
values of a static vacuum solution, for general diffeomorphisms ϕ of Σ ' S2. Thus the symmetry
group of the problem has been reduced in the immersed case.

This breakdown of diffeomorphism invariance of the problem implies that one must work in a
suitable fixed gauge. One can no longer deal with metrics up to isometry (i.e. moduli spaces of
metrics or solutions to the equations) but only with metrics in a fixed gauge, i.e. (local) coordinate
system. It is worth noting that the Weyl metrics, discussed in detail in §4, do have a preferred
global gauge (coordinate system).

Let (M, gi, ui) ∈ E be a sequence of static vacuum solutions for which the boundary data

(γi, Hi) ∈ B converge to a limit (γ,H), H ≥ 0 in B̃. There are only two ways that the sequence can

degenerate, i.e. fail to have a subsequence which converges to a limit (M, g, u) ∈ Ẽ , cf. (2.7)). First
the structure of an exterior manifold with boundary may break down as above; this occurs only if
there is no uniform lower bound on the distance to the cut locus of the gi-normal exponential map
of ∂M into (M, gi). Second, the norm of the Riemann curvature Rm of gi may tend to infinity at
or arbitrarily near ∂M ,

(3.3) |Rmgi(xi)| → ∞,

for some sequence such that t(xi)→ 0, (cf. [14]). Of course it is possible that both of these behaviors
occur simultaneously. We note that a special case of the analysis given in [14] shows that (3.3) does
not occur if there are uniform lower and upper bounds on the potential u at ∂M , i.e. constants
m,M such that

0 < m ≤ ui ≤M <∞ on ∂M.

There is one, seemingly natural, condition that can be used to rule out both of these possibilities
of degeneration at once. Thus, recall that the boundary ∂M is called outer-minimizing in (M, g) if
for any surface S ⊂M surrounding ∂M , i.e. S is homologous to ∂M in M , one has

(3.4) areag S ≥ areag ∂M.

The boundary ∂M is strictly outer-minimizing if strict inequality holds in (3.4), for all S 6= ∂M .
Note that by the first variational formula for area, (3.4) implies (1.3), H ≥ 0 at ∂M . It is obvious
but important to note that the outer-minimizing condition depends on the global structure of the
solution (M, g); it cannot be expressed only in terms of the boundary data (γ,H).

The following result was proved by the author in [14].

Theorem 3.3. Let (M, gi, ui) ∈ Ē be a sequence of static vacuum Einstein metrics with boundary
data (γi, Hi) with Hi ≥ 0, m ≥ 4, such that

(gi, Hi)→ (γ,H),
12



in B̃. Suppose also that ∂M is outer-minimizing in (M, gi) for each i:

areagiS ≥ areagi∂M,

for all S surrounding ∂M . Then a subsequence converges in Ẽ to a limit static vacuum Einstein
metric (M, g, u) ∈ Ē with boundary data (γ,H).

Thus, one has good compactness properties under an outer-minimizing condition.

In light of Theorem 3.3, it might seem beneficial to restrict to static vacuum solutions with
(strictly) outer-minimizing boundary. Let then Eout ⊂ E be the space of static vacuum solutions
for which the boundary is strictly outer-minimizing:

(3.5) areagS > areag∂M,

for S 6= ∂M . This is clearly an open condition so that Eout remains a smooth Banach manifold.
The map

(3.6) ΠB : Eout → B,
is still well-defined, smooth and Fredholm, of index 0.

In fact it is not unusual in the literature to modify the definition of the Bartnik mass by replacing
the no horizon condition (no minimal surfaces surrounding the boundary) by an outer-minimizing
condition. Thus define

(3.7) mout
B (Ω, gΩ) = inf{mADM (M, g) : (M, g) ∈ PoutΩ },

where PoutΩ is the space of strictly outer-minimizing extensions of (Ω, gΩ) or equivalently of the
boundary data (γ,H); cf. [28] for a detailed discussion. Similarly, the minimizing and static exten-
sion Conjectures I and II are then rephrased to assert the existence and uniqueness of static vacuum
solutions with strictly outer-minimizing boundary. One advantage of this modified definition is the
fundamental estimate of Huisken-Illmanen [26],

mout
B (γ,H) ≥ mH(γ,H) =

√
areag∂M

16π
(1− 1

16π

∫
∂M

H2),

comparing the outer-minimizing Bartnik mass with the Hawking mass of the boundary.
The problem with these reformulations say of Conjecture II is that one needs the strict inequality

(3.5) to have a satisfactory manifold structure to the space Eout of solutions. Working instead with
the (weak) outer-minimizing condition leads, at best, to the structure of a Banach manifold with
boundary; this is not suitable to try to apply general existence methods, such as the method of
continuity or the more general degree theory techniques discussed briefly in §2.

On the other hand, in passing to limits of minimizing sequences, (assuming such limits exist),
the strict outer-minimizing property is not preserved; limits can be expected to be only (weakly)
outer-minimizing. Thus for a limit minimizer to be an admissible extension, one needs to work
with the (closed) weak outer-minimizing condition. In a similar vein, the map ΠB in (3.6) cannot
possibly be proper. One can easily find sequences (M, gi, ui) ⊂ Eout with (γi, Hi) → (γ,H) ∈ B
smoothly, but which have no limit (M, g, u) in Eout. In fact it is easy to find such sequences of
boundaries in a fixed background solution (M, g, u)) with limit only weakly outer-minimizing

areag S ≥ areag ∂M.

Thus, neither the weak or strict outer-minimizing condition seems satisfactory. We are not aware
of any way out of this quandary.

Remark 3.4. One might raise the same objection with the no-horizon condition itself; if a static
vacuum solution had a horizon, (i.e. a minimal surface surrounding ∂M), then it could not be
an admissible extension and so could not realize the Bartnik mass as in Conjecture I. One would
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have to consider only static vacuum solutions without horizons, which would be very awkward.
Fortunately, Proposition 2.1 rules out this situation.

Of course, the main trouble here is that the outer-minimizing property (strict or weak) cannot be
phrased in terms of the boundary data (γ,H). There has been some speculation that suitable con-
ditions on the boundary data (γ,H) would ensure that static vacuum solutions with such boundary
data have strict outer-minimizing boundary; a common suggestion, based on the resolution of the
Weyl embedding problem, is the condition

Kγ > 0 and H > 0.

However, the next result shows that this cannot possibly work, at least for H small.
Using Theorem 3.3, we prove the following non-existence result. This may be viewed as a stable

version of the black hole uniqueness theorem, as in Proposition 2.1, with H small replacing H = 0.

Theorem 3.5. Let γ be a smooth metric on S2 such that the Gauss curvature Kγ is a Morse
function in the domain Kγ > 0, i.e. Kγ has only non-degenerate critical points when Kγ > 0.

Let µ(p) = min |λi(p)|, where λi(p) 6= 0 are the eigenvalues of the Hessian D2Kγ at a critical
point p of Kγ, Kγ(p) > 0. Let also C = ||γ||Cm,α + ||H||Cm−1,α, for some m ≥ 4.

Then there is a constant H0 > 0, depending only on C and a positive lower bound for µ0 =
minp µ(p) > 0, such that: for any smooth function H satisfying

(3.8) 0 < H < H0,

pointwise, the Bartnik boundary data (γ,H) are not the boundary data of a static vacuum Einstein
metric (M, g, u) ∈ E. Thus for such (γ,H) ∈ B,

Π−1
B (γ,H) = ∅.

We note that at least a large class of boundary data satisfying (3.8) above do have positive scalar
curvature fill-ins, i.e. are boundary data of compact domains (Ω, gΩ) with positive scalar curvature.

Proof. The proof is by contradiction. Thus, let (γi, Hi) ∈ B, (Hi > 0), be a sequence of boundary

data converging in B̃ to (γ, 0) /∈ B and satisfying the assumptions of Theorem 3.5. Suppose there
is a sequence of static vacuum solutions (M, gi, ui), ui > 0 with Bartnik boundary data (γi, Hi).
We then need to derive a contradiction.

In case the boundary ∂M is (weakly) outer-minimizing in (M, gi) for i sufficiently large, Theorem
3.5 is proved in [11], based on the discussion in [13]. We sketch the argument for completeness.
Since ∂M is outer-minimizing, Theorem 3.3 implies that a subsequence of (M, gi, ui) converges in

Ẽ to a limit solution (M, g, u) ∈ Ẽ of the static vacuum Einstein equations with u ≥ 0 and u → 1
at infinity. The Bartnik boundary data of (M, g, u) is given by

lim
i→∞

(γi, Hi) = (γ, 0).

By the black hole uniqueness theorem as in Proposition 2.1, the only static vacuum solution
(M, g, u) with u ≥ 0, u → 1 at infinity and smooth horizon boundary H = 0 is the Schwarzschild
metric with boundary data (γ2m, 0). Since the Gauss curvature Kγ2m ≡ (2m)−2 is not a Morse func-
tion, this gives a contradiction. Namely the smooth convergence of (M, gi, ui) up to the boundary
implies that Ki is smoothly close to the constant (2m)−2; however, the eigenvalues of the Hessian
D2Ki are bounded away from 0, say at maxKi.

Now in general, consider a static vacuum solution (M, g, u) (say equal to some (M, gi, ui) above)
with boundary data (γ,H) with H > 0 but close to 0. Let Σ be the outer-minimizing hull of ∂M
in M , cf. [26]. This is the embedded surface surrounding ∂M in (M, g) of smallest area. Note first
that by Proposition 2.1, Σ ⊂M cannot be disjoint from ∂M , so

Σ ∩ ∂M 6= ∅.
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Let U ⊂ ∂M be the interior of ∂M ∩ Σ and let V = Σ \ Ū ⊂ Σ. Then (again by Proposition 2.1),
both U and V are non-empty open sets; of course, neither U nor V is assumed to be connected.
By the outer-minimizing property, one has

H = 0 on V.

The surface Σ is C1,1 at the seam or corner ∂U ∩ ∂V , smooth away from ∂U ∩ ∂V and has non-
negative distributional mean curvature H across ∂U ∩ ∂V , cf. [26].

Now given (M, gi, ui) as above, consider the new sequence of static vacuum solutions (M̂i, gi, ui)

where M̂i ⊂ M is the region of M exterior to Σi, so ∂M̂i = Σi. The analysis to follow will be to
show that that the same arguments as before where ∂M i was outer-minimizing can be applied to

the new sequence (M̂i, gi, ui) to again obtain a contradiction.
Let γUi = gi|Ui and γVi = g|Vi . The metric γUi is uniformly controlled in Cm,α by hypothesis,

since Ui ⊂ ∂M i. Now assume first, for simplicity, that the sequence (Vi, γVi) is uniformly bounded
in C4,α (modulo diffeomorphisms), so that the Gauss curvature Ki of (Vi, γVi) is uniformly bounded

in C2,α. The same then holds for the induced metric γ̂i on ∂M̂i, away from the seam or corner
∂Vi ∩ ∂Ui ⊂ Σi. Thus away from the corners, one has Hi → 0 in C3,α with γ̂i bounded in C4,α.
One may then still apply the proof of Theorem 3.3 in this setting to conclude that the curvature

Rmgi and its derivatives up to order 2 +α are uniformly bounded in M̂i, up to the boundary ∂Mi.

Thus, in a subsequence, (M̂i, ĝi, ûi) converges in C4,α away from corners to a round Schwarzschild
metric, cf. also the proof of Proposition 2.1 and Remark 2.2. In particular, this convergence holds
in Ui ⊂ ∂M i and so gives the same contradiction as above - even if components of Ui shrink to
points for instance.

Now the surfaces (Vi, γVi) are stable minimal surfaces in (M, gi). In the Appendix, we prove a
regularity result for such stable minimal surfaces in static vacuum Einstein manifolds which implies
that if both the scalar curvature sVi of (Vi, γVi) and the full Riemann curvature Rm of (M, gi) are
uniformly bounded along Vi,

(3.9) |sVi |+ |Rmgi | ≤ C

on Vi, then in fact (Vi, γVi) is uniformly bounded in C∞ modulo diffeomorphisms. Note this
statement is standard for the trivial static vacuum Einstein metric R3. It also follows easily in
regions of Vi where ti = distgi(∂M i, ·) is bounded away from 0, by the estimates (3.1). Thus, the
proof follows just as above if (3.9) holds, and so it suffices to prove (3.9).

We prove (3.9) by a blow-up argument. The discussion below applies to each (M̂i, gi, ui) but we
drop the index i from the notation; the estimates below are then understood to hold uniformly, for
all i large.

To begin, the 2nd variation of area gives

(3.10)

∫
Σ

(|df |2 + (N(H) +H2)f2)dvγΣ ≥ 0,

and the normal variation of H is given by N(H) = −|A|2 − Ric(N,N). By the Hamiltonian
constraint (Gauss) equation (5.1), |A|2 −H2 + sγ = −2Ric(N,N), so that

N(H) = −1
2(|A|2 +H2 − sγΣ).

Choosing f = 1 in (3.10) thus gives the bound∫
Σ
|A|2 ≤

∫
Σ
sγΣ +H2 = 4πχ(Σ) +

∫
Σ
H2.
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Since H2 → 0 uniformly, it follows that one has the uniform bound

(3.11)

∫
Σ
|A|2 ≤ 8π + 1.

Note this bound is scale invariant. Next, again from the Gauss equation, cf. (5.3), one has

|A|2 −H2 + sγ = 2u−1(∆u+HN(u)).

Integrating over Σ and applying divergence formula gives∫
Σ
|dT ν|2 ≤ 8π −

∫
Σ
HN(ν),

where dT ν is the tangential gradient of ν on Σ. On the domain V ⊂ Σ, H = 0 while on the locally
outer-minimizing complement U ⊂ ∂M , HN(ν) converges to a well-defined limit by Theorem 3.3,
cf. [14] for details. It follows that

(3.12)

∫
Σ
|dT ν|2 ≤ C,

for some uniform C, independent of i.
Next, for the blow-up argument, choose points pi ∈ Σi realizing the maximum of

(3.13) Qi(x) = |sγVi (x)|+ |Rmgi(x)|,

x ∈ Σi. Without loss of generality, assuming Qi(pi) → ∞, we rescale the metrics gi (and corre-
spondingly γVi) by

ḡi = Qi(pi)gi,

so that

(3.14) Q̄i ≤ 1 and Q̄i(pi) = 1,

on Σi. Clearly one has pi ∈ Vi. We also renormalize u to ūi = ui/u(pi). Again by (the proof of)

Theorem 3.3, |Rmḡi | is uniformly bounded on (M̂i, ḡi).

To prove that a subsequence (M̂i, ḡi, pi) converges modulo diffeomorphisms, (i.e. in the Cheeger-
Gromov sense), in C1,α, we need to rule out the possibility of collapse of the metrics, i.e. the collapse
of the volume of unit balls at pi.

Lemma 3.6. (Non-collapse). For the rescaled sequence (M̂i, ḡi, pi), there is a uniform lower bound

(3.15) volḡiBpi(1) ≥ v0 > 0.

Similarly, the boundary geometry (Σi, γ̄i, pi) does not collapse:

(3.16) areaγ̄iDpi(1) ≥ a0 > 0.

Proof. First, as discussed in the Appendix, cf. (5.5), for any (M, g, u) ∈ E , the conformally equiv-
alent metric g̃ = u2g has positive Ricci curvature. The metric g̃ is AF and hence by the Bishop-
Gromov volume comparison theorem, there is a uniform scale-invariant lower bound on the volume
of r-balls in (M, g̃):

volg̃B(r)

r3
≥ v0 > 0.

Now apply this to the rescaled metrics (M̂i, ḡi, ūi) based at pi. Since ūi is uniformly bounded above
and below in (Bpi(1), ḡi), (cf. (5.8)), the metrics ḡi and g̃i are uniformly quasi-isometric in this
region. This proves (3.15).

To see that the boundary geometry also cannot collapse, recall that (Σi, γ̄i) has uniformly
bounded (Gauss) curvature. If the geometry is collapsing at pi, then the geometry of a large
geodesic disc Dpi(R) about pi in (Σi, γ̄i) is that of a long cylinder which has a foliation by short
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(geodesic) loops. Since the ambient curvature is uniformly bounded, if ` denotes the length of the
short loops in (Σi, γ̄i) near pi, then |A| ∼ `−1 and hence∫

I
|A|2dvγ ∼

∫
I
``−2 ∼ `−1.

Since A is bounded in L2 by (3.11) and since (3.11) is scale-invariant, this gives a uniform lower
bound on `, proving (3.16).

The discussion above proves that, after passing to a subsequence, the sequence (M̂i, ḡi, ūi, pi)
converges in the pointed C1,α topology, modulo diffeomorphisms, to a complete non-compact limit
(M∞, ḡ∞, ū∞, p), with complete, non-compact boundary (S, γS , ū∞, p). The rest of the argument
to follow is to prove that the limit is flat, with flat boundary S. By results in the Appendix,
cf. Proposition 5.2, the convergence to the limit is in the strong C2 topology, giving a contradiction
to the continuity of Q in (3.14) under C2 convergence. This will complete the proof of Theorem
3.5.

All the discussion to follow takes place on the limit M∞ and S so we drop the bar and ∞ below
to simplify the notation.

On the blow-up limit boundary S, we have A and dν are in L2(S, γS), by (3.11) and (3.12).
Moreover, the ambient curvature |Rm| is uniformly bounded along S. As above, D(r) denotes a
geodesic r-disc in (S, γS) about p.

Lemma 3.7. The limit (S, γS) has at most quadratic area growth, i.e.

(3.17) areaγSD(r) ≤ V r2,

for some V <∞.

Proof. On (S, γS), we have

(3.18) |A|2 + sγS = 2u−1∆u.

Let v(r) be the length of the boundary S(r) = ∂D(r). Integrating (3.18) over D(r) and applying
the Gauss Bonnet and divergence theorems gives

4π − 2v′(r) = −
∫
D(r)
|A|2 + 2

∫
D(r)
|dT ν|2 + 2

∫
S(r)

∂rν.

By (3.11), this gives

v′(r) ≤ C +

∫
S(r)
|dT ν|.

On intervals where v′(r) ≤ C, (3.17) holds (by integration), so assume only

v′(r) ≤ C
∫
S(r)
|dT ν|.

By the Hölder inequality,
∫
S(r) |d

T ν| ≤ (
∫
S(r) |d

T ν|2)1/2v(r)1/2, so that ((
√
v′(r))′)2 ≤ C

∫
S(r) |d

T ν|2.

Let q(r) =
√
v′(r), so that via (3.12) we obtain∫ r

0
(q′)2 ≤ C.

Then q(r) ≤
∫ r

0 q
′(r) ≤ (

∫ r
0 (q′(r)2)1/2r1/2 ≤ Cr1/2, so that again v(r) ≤ Cr. This proves the result.
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Lemma 3.8. The surface (S, γS) ⊂ (M, g) is AF in the weak sense that

Q(xk)→ 0,

on any sequence xk →∞ in S.

Proof. Let xk be any divergent sequence in S and consider the geometry of pointed manifolds
(S, γS , xk) in regions about xk. By Lemma 3.6, this sequence does not collapse, and so has a C1,α

limit (in a subsequence). Also, A→ 0 and dν → 0 in L2
loc, by (3.11) and (3.12). By the regularity

estimates in the Appendix, A is uniformly bounded in L∞, as is u ∈ L2,p
loc on the boundary S and

in M , cf. (5.7), (5.8). Hence N(u) is also uniformly bounded. By the constraint equation (5.4),

δA−A(dν) = u−1dN(u).

The term A(dν) → 0 in L2
loc, while the term δA → 0 in L−1,2

loc . It follows that dN(u) → 0 in

L−1,2
loc and hence N(u) → const weakly in L2

loc. Since N(u) is also uniformly bounded in L∞,
N(u) → const strongly in L2

loc. It follows that on the limit (which is smooth by regularity results
from Appendix), one has the limit data

A = 0, u = const, N(u) = const.

Similarly, NN(u) = 0 on the limit, etc. Since ∆gu = 0 on M , unique continuation for the Laplacian
implies that D2u = 0 on (M, g) so that u is an affine function and the metric g is flat. Since A = 0,
the boundary metric γ is also flat.

It follows that Q ≡ 0 on the limit. By the strong convergence (Proposition 5.2) in the Appendix,
it follows that Q(xk)→ 0, as claimed.

It follows, by repeated use of Lemma 3.8 at various blow-down scales that all tangent cones at
infinity of (S, γS) are flat, with flat ambient geometry, i.e. (D(r), 1

r2γS) converges to a flat metric
away from the origin p and similarly with gS in place of γS . Now apply the stability inequality
(3.10) on the complete (S, γS). By the well-known log-cutoff trick, (cf. [23] for example) one has∫

S
|A|2 − sγS ≤ 0,

so that by the Gauss-Bonnet theorem,

(3.19)

∫
S
|A|2 ≤

∫
S
sγ = 2π − lim

r→∞
v′(r).

This implies first that limr→∞
v(r)
r ≤ 2π. Suppose strict inequality holds, limr→∞

v(r)
r < 2π. The

tangent cone at infinity C is S is then a flat cone, of cone angle α < 2π, which bounds a flat static
vacuum solution. By the scale-invariant apriori estimates (3.1), the limit static vacuum solution is
smooth away from the boundary cone C, so cannot be of the form C×R+, which is singular in the
interior: any singularity of the cone C cannot propagate into the exterior region. On the other hand,
if C is a singular cone, α < 2π, in an ambient smooth flat geometry, then one has

∫
C |A|

2 = ∞,
again a contradiction. (Alternately, such cones are not outer-minimizing in the ambient geometry).

It follows that

(3.20) lim
r→∞

v(r)

r
= 2π,

and hence by (3.19), ∫
S
|A|2 = 0,
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so that A = 0 on S. The potential equation (3.18) then becomes

K = u−1∆u.

Integrating this over D(r) and taking the limit gives

lim
r→∞

[

∫
D(r)
|dT ν|2 +

∫
S(r)

∂rν] = 0,

since limr→∞
∫
D(r)K = 0. As in the proof of Lemma 3.7, this implies∫

S
|dT ν|2 = 0,

so that u = const on S. Thus the Cauchy data (γ,A, u,N(u)) for the static vacuum Einstein
equations equal that of a flat solution with affine potential. By unique continuation as in the proof
of Lemma 3.8, it follows that the limit is flat, with flat boundary, so that Q = 0 on S. This again
contradicts the strong convergence to the limit, cf. Proposition 5.2.

The condition that Kγ is a Morse function is a sufficient but we don’t believe a necessary
condition. It is natural to conjecture that Theorem 3.5 holds for all γ, with then H sufficiently
small depending only on lower and upper bounds for the distance of γ to a round metric in say
C4,α.

It follows in particular that the mass mB cannot be realized by boundary data (γ,H) with H
sufficiently small and γ not a round metric, i.e. Conjecture I also fails in this situation.

Remark 3.9. Theorem 3.5 should be contrasted with the following result, proved in [10]; the proof
also strongly uses the outer-minimizing property: for any given boundary data (γ,H) ∈ B, there
is a λ > 0 such that

(γ, λH) ∈ Im ΠB,

i.e. there is a static vacuum solution (M, g, u) with boundary data (γ, λH). Moreover, ∂M is outer-
minimizing in (M, g). Thus, for any γ, if one increases H sufficiently by a positive multiplicative
factor, then there is a solution to the static vacuum equations realising the given Bartnik boundary
data.

For boundary data (γ,H) /∈ Im ΠB as in Theorem 3.5, a minimizing sequence for mB(γ,H)

cannot converge, so it must degenerate. How? Consider first the boundary data (γ, 0) ∈ B̃, with γ
not a round metric on S2, compare with (2.12). The black hole uniqueness theorem (Proposition
2.1) implies that a minimizing sequence for this boundary data must degenerate. The work of
Mantoulidis-Schoen [30] indicates how this occurs – when the first eigenvalue λ1(−∆γ +Kγ) > 0 –
for minimizing sequences with respect to the outer-minimizing mass mout

B (γ, 0) in (3.7). Briefly, the
AF end of a minimizing sequence converges to a Schwarzschild metric gSch(m) up to or arbitrarily
near the horizon, where m is given by

m =

√
areaγ ∂M

16π
.

The remaining portion of the sequence forms an (arbitrarily) long cylinder of non-negative scalar
curvature, connecting the nearly round metric near the horizon at one end to the metric γ at the
other end. The cylindrical region is ’hidden behind’ the Schwarzschild horizon; since this region
does not contribute to the ADM mass, one has no effective control on the behavior of a minimizing
sequence in this region. We refer also to the work of Miao-Xie [32] for related results.

We conjecture similar behavior occurs for minimizing sequences for mB(γ,H) when H > 0 is
sufficiently small, depending on γ as in Theorem 3.5.
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The non-existence region above strongly suggests there is a large region of fold behavior for the
map ΠB, which, in turn, implies a large region of non-uniqueness for Conjecture II (compare with
the discussion in and preceding the toy model (2.13)).

We describe the situation on a concrete example. Choose a fixed Schwarzschild metric gSch(m)
and choose a round sphere S(t) at fixed distance t > 0 to the horizon. Let (γ0, H0) be the induced
Bartnik boundary data on S(t), so γ0 is a round metric and H0 > 0 is a small constant. It is proved
in [14] that KerDΠB = 0 at the Schwarzschild metric exterior to the horizon H = 0 (even though
DΠB is not Fredholm there); hence KerDΠB = 0 at the exterior region to S(t) for t small, i.e. this
exterior metric is a regular point of ΠB. Now choose any fixed metric γ satisfying the hypotheses
of Theorem 3.5, i.e. Kγ is a Morse function in the region Kγ > 0. Consider the curve of boundary
data

L(s) = (1− s)(γ0, H0) + s(γ,H0) ⊂ B,
for s ∈ [0, 1] and the corresponding inverse image

Π−1
B (L(s)).

By the Smale-Sard theorem [37], if necessary one may perturb L : I → E slightly to L̃ : I → E ,

keeping the endpoints fixed, so that L̃ : I → E is transverse to ΠB. The inverse image

Π−1
B (L̃),

is then a collection of 1-dimensional curves {σi(s)} in E . If there is more than one component

of Π−1
B (L̃) then of course one already has non-uniqueness for Conjecture II, so suppose then that

σ = Π−1
B (L̃) is a connected curve. By Theorem 3.5, for H0 sufficiently small depending on γ, there

is s0 < 1 (possibly close to 1) such that either

(3.21) Π−1
B (L̃[s0, 1]) = ∅ or Π−1

B (L̃(s0, 1]) = ∅.

Without loss of generality, assume Π−1
B (L̃(s)) 6= ∅ for s < s0. We discuss these two possibilities in

more detail.
I. In the first case above, as s→ s0 with s < s0, the curve σ(s) diverges to infinity in E , i.e. ΠB

is not a proper map over L̃. Since at s = 0 the boundary S(t) is strictly outer-minimizing in
the Schwarzschild metric, the boundary ∂M of σ(s) remains outer-minimizing for s sufficiently
small. However, by Theorem 3.3, the boundary cannot remain outer-minimizing for all s ∈ [0, s0).
The divergence of the curve σ(s) as s → s0 is due either to a loss of the manifold-with-boundary
structure or the curvature blows up on approach to the boundary (or both).

II. In the second case, the map ΠB is proper at least over L̃[0, s1) for some s1 > s0. In this case,

ΠB exhibits fold behavior (like x → x2) over L̃. Such fold points σ(s0) are critical points of ΠB

and the map ΠB is locally 2-1 over L̃ near L̃(s0). This again gives non-uniqueness for Conjecture
II.

The same analysis as above applies to general curves in B, which start at data (γ0, H0) for which
(ΠB)−1(γ0, H0) 6= ∅ and which end at points (γ,H) satisfying the conditions of Theorem 3.5, for
which (ΠB)−1(γ,H) = ∅. We conjecture that, at least for a large class of curves, Case I does not
occur, so the fold behavior of Case II holds.

4. Weyl metrics

It is of course important to have a large class of examples on which one can test the Bartnik
conjectures in various regions of boundary data. The most interesting class of (relatively) explicit
solutions are the Weyl solutions [39], [15], which have an additional axial symmetry. These metrics
have a hypersurface-orthogonal isometric S1 action, so that the metric g = gM on M has the form

(4.1) gM = f2dϕ2 + gV ,
20



where the orbit space (V, gV ) is a Riemannian surface with V ' (R3 \ B)/S1 ' (R2)+ \D. Thus
the Ricci flat 4-metric (M, gM) (as in (1.5)) has the form

(4.2) gM = ±u2dt2 + f2dϕ2 + gV ,

with u, f positive functions on V . This gives the 4-manifold M the structure of a toric Einstein
4-manifold (when the t-factor is compactified to S1 in the Riemannian setting). The static vacuum
equations (1.4) are then reduced to equations on (V, gV ).

As in (2.5), let

(4.3) Em,α
S1 = Em,α

S1 /Diffm+1,α
1 (M),

denote the (abstract) space of isometry classes of such AF Weyl metrics of the form (4.1), with
H > 0 at ∂M . Similarly, the space of S1-invariant boundary data is given by

Bm,α
S1 = Metm,α

S1 (S2)× Cm−1,α
S1,+

(S2).

Here Metm,α
S1 (S2) denotes the space of Cm,α metrics on S2 of the form α2dθ2 + β2dϕ2, α = α(θ) >

0, β = β(θ) where (θ, ϕ) are standard spherical coordinates on S2(1); there is no dϕdθ cross term
in (4.1). At the poles θ = 0, π, one has β = 0 and β′ = ±α with similar higher order conditions on

β at 0, π for Cm,α smoothness. The functions in Cm−1,α
S1,+

(S2) are positive functions H of the form

H = H(θ) with similar smoothness conditions at the poles.
The associated Bartnik boundary map

(4.4) ΠB : ES1 → BS1 ,

(M, g, u)→ (γ,H),

is still a smooth Fredholm map of Fredholm index 0. One expects or at least hopes that it should
be considerably simpler to understand the validity of Conjectures I and II in the context of Weyl
metrics compared with the general case.

An important feature is that Weyl metrics have a canonical choice of coordinates, Weyl cylindrical
coordinates and it is useful to derive this in some detail, cf. also, [6] [29] for background material
on these metrics. First, note that both Mu = V ×f S1 with metric gV + f2dθ2 and Mf = V ×u S1

with metric gV + u2dθ2 are static vacuum solutions on the respective 3-manifolds, with potentials
u and f . Thus one has a natural dual pairing u↔ f , cf. [6] for further discussion. On Mu,

0 = ∆Muu = ∆V u+ 〈d log f, du〉,
while on Mf ,

0 = ∆Mf
f = ∆V f + 〈d log u, df〉.

It follows that the function

(4.5) r = fu

representing the area of the toral fibers in (4.2), is harmonic on V , ∆V r = 0. Noting that V is simply
connected, let z be the harmonic conjugate of r on V . Then (r, z) give isothermal coordinates for
the metric gV . Adding the coordinate ϕ ∈ [0, 2π] gives the Weyl canonical cylindrical coordinates
(r, z, ϕ) on M = V ×f S1. In these coordinates, the metric g on M has the form

(4.6) g = gM = u−2[e2λ(dr2 + dz2) + r2dϕ2],

for some function λ. Let ν = log u. Further analysis using the static vacuum equations (1.4) shows
that λ satisfies

(4.7) λr = r(ν2
r − ν2

z ), λz = 2rνrνz,

so that the 1-form dλ is given by dλ = r(ν2
r−ν2

z )dr+2rνrνzdz. Thus, λ is completely determined by
u, up to a constant. On the z-axis A where r = 0 (so θ = 0, π) one has λ = const. The metric (4.6)
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is regular (i.e. smooth) at A only when λ = 0; otherwise there is a cone singularity along A. Thus,
λ is uniquely determined by ν. Note that r in (4.5) is uniquely determined by (M, g, u)9 while z is
uniquely determined up to a constant; this constant may be fixed by imposing the normalization
condition

(4.8)

∫
∂M

z dvγ = 0.

We note that (r, z) normalized as in (4.8) vary smoothly with (g, u).
The coordinates (r, z, ϕ) represent standard cylindrical coordinates on R3. Most importantly, the

potential function ν = log u is an axi-symmetric (i.e. ϕ-invariant) harmonic function with respect
to the Euclidean Laplacian:

(4.9) ∆Euclν = 0.

Observe that the full Weyl solution (4.6) is determined by the single potential function ν in these
coordinates.

One main point here is that given any (abstract) Weyl metric, there is a canonical choice of
coordinates, i.e. gauge, read off from the geometry of S1 fibers, compare with Remark 3.2. In
this chart, the Weyl solution (M, g, u) is completely determined by the axi-symmetric Euclidean
harmonic function ν and the location of the boundary ∂M . This is the remarkable Weyl reduction
of a non-linear system of equations to a linear equation.

Working in these coordinates, a boundary is specified by a, say Cm+1,α, embedded curve

(4.10) σ : [0, π]→ (R2)+

in (R2)+, σ(θ) = (r(θ), z(θ)) meeting the axis A smoothly and orthogonally only at θ = 0, π. The
rotation of σ about the axis A generates an embedding

F : S2 → R3

of a sphere as a surface of revolution in R3. The image Σ = ImF divides R3 into a compact interior
region diffeomorphic to a 3-ball B and a non-compact exterior region diffeomorphic to R3 \B. Here
we focus exclusively on the exterior manifold-with-boundary M with ∂M = Σ. We will assume
that σ is oriented10 in that θ = 0 corresponds to the north pole of S2 while θ = π corresponds to
the south pole and the normal vector ∂z at σ(0) points into the exterior region M .

The induced metric γ on the boundary is given by

(4.11) γ = F ∗g = u−2[e2λ((r′(θ))2 + (z′(θ))2)dθ2 + r2dϕ2].

By computation, one has

(4.12) eλ−νH = HEucl +NE(λ− 2ν),

where NE is the Euclidean unit normal pointing into M and HEucl is the mean curvature of ∂M
with respect to the Euclidean metric; this is given by

HEucl =
NE(r)

r
+ κE ,

corresponding to the standard formula for the mean curvature of surfaces of revolution in R3; here
κE is the Euclidean geodesic curvature of σ, given as 〈∇TN,T 〉 in the Euclidean metric.

9Since u > 0 on M and g is smooth on M , note that (4.6) also shows that r is a well-defined coordinate, i.e. dr 6= 0
on M .

10This will be dropped later.
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Examples. A very useful and large class of examples of Weyl solutions, closely related to New-
tonian gravity, are given as follows. Let dµ be any positive Radon measure, compactly supported
on the axis A. Then the Newtonian potential of ν, i.e.

(4.13) ν(x) = −
∫
A

1

|x− y|
dµy,

gives an axisymmetric harmonic function on R3 \ supp dµ and so generates an AF Weyl solution.
For example, taking

dµ =
1

2
d`[−m,m],

where d` is the Lebesque measure on the interval [−m,m] gives the Schwarzschild metric of mass
m. On the other hand, taking

dµ = κd`[−m,m],

for any κ 6= 1
2 generates a metric g which is singular, i.e. not smooth up to the boundary supp dµ.

Taking dµ = mδ0 to be a multiple of the Dirac delta function supported at the origin of A, gives

ν = −m
R
,

a multiple of the Green’s function on R3, with R2 = r2 + z2. The resulting solution, called the
Curzon solution, is given explicitly as

gC(m) = e2m/R[e−m
2r2/R4

(dr2 + dz2) + r2dϕ2].

This metric becomes highly singular on approach to the origin 0 ∈ R3.
It is not difficult to see (cf. [6]) that for all solutions as in (4.13), ν → −∞, so u→ 0, on approach

to at least a dense subset of supp dµ. Thus, such static vacuum solutions are maximal, in the sense
that they cannot be extended to any larger domain.11

One may then take a boundary ∂M = ImF as above to obtain a Weyl solution (M, g, u) with
induced Bartnik boundary data (γ,H) on ∂M . These solutions correspond to varying domains in
a fixed ambient maximal Weyl solution generated by ν in (4.13).

Not all Weyl solutions (M, g, u) are of this form however. The most general solutions are given
by solving the Dirichlet problem for ν.12

Proposition 4.1. Let σ : I → R2 be a Cm+1,α embedding as in (4.10) and let ν be a Cm,α function
on Imσ. Then ν extends uniquely to an axisymmetric harmonic function on the exterior domain
M = R3 \ B with ν → 0 at infinity, and generates an AF Weyl metric (M, g, u) which is Cm,α up
to ∂M .

Conversely, up to isometry in Diffm+1,α
1 (M), any AF Weyl metric (M, g, u) which is Cm,α up to

∂M is uniquely given by such a pair (σ, ν) satisfying (4.8).

Proof. The first statement is standard from elliptic regularity theory, given the discussion above.
For the second statement, given a specific representative (M, g, u) ∈ Em,α

S1 representing a class in

Em,α
S1 , construct the Weyl canonical coordinates (r, z, ϕ), normalized as in (4.8). These coordinates

restrict to ∂M to give an axi-symmetric embedding F : ∂M ' S2 → R3 and hence the embedding
σ : I → (R2)+. A different representative (M ′, g′, u′) of (M, g, u) in Em,α

S1 gives the same map F ,

since the diffeomorphisms in Diffm+1,α
1 (M) fix the boundary pointwise.

11One could also take potentials ν as in (4.13) with more general signed measures or even distributions supported
in A, generating Weyl metrics in the same way. However, when dµ is a positive measure, boundaries have fill-ins
(Ω, gΩ) with non-negative scalar curvature and the ADM mass mg of the solution is always non-negative.

12One could also solve the Neumann or a suitable Robin boundary value problem instead.
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To see that σ ∈ Cm+1,α(θ), by hypothesis ν, and hence λ, is Cm,α up to ∂M , while H ∈
Cm−1,α(θ). Boundary regularity for harmonic functions implies that N(ν) is Cm−1,α up to ∂M and
hence the same for N(λ). Thus, by (4.12), HEucl ∈ Cm−1,α(θ). This together with the fact that

the Euclidean arclength parameter
√

(r′)2 + (z′)2 ∈ Cm,α implies σ ∈ Cm+1,α(θ).

Remark 4.2. Generic boundary data ν on ∂M lead to harmonic functions on M which do not
extend to any larger region M ′ ⊃ M containing ∂M in the interior. Thus the examples above,
although simple and useful, are not generic. Note that when the boundary data ∂M and ν are
analytic, then ν and so g does extend past ∂M to a slightly larger domain M ′.

Remark 4.3. Proposition 4.1 suggests that the simplest boundary data for a Weyl metric are
the Dirichlet boundary data. This corresponds to the isometric embedding of a prescribed metric
u2dt2 + γ on the boundary S1 × S2 into an ambient 4-dimensional Weyl metric. However, it is
proved in [7] that Dirichlet boundary data are not elliptic boundary data for (general) Einstein
metrics.

We see then that the space Em,αW of Cm,α AF Weyl metrics in Weyl canonical coordinates has a
very explicit (and simple) form:

Em,αW ' [Embm+1,α(I)× Cm,α(I)]/T,

(M, g, u)↔ (σ, ν).

where T is the action of translations along the z-axis A on the first factor. The Bartnik boundary
map is thus given by

(4.14) ΠB : Em,αW → Bm,α
S1 ,

ΠB(ν, σ) = (F ∗g,HF,g).

The three (arbitrary) functions (σ, ν) = (r(θ), z(θ), ν(θ)) describing the points in EW correspond
to the three (arbitrary) functions (α(θ), β(θ), H(θ)) in BS1 .

Now, in contrast to the (abstract) map ΠB in (4.4), the map in (4.14) is no longer smooth;
although it is C0, it is not even C1. Namely, let Fs be a smooth curve of Cm+1,α axi-symmetric
embeddings of S2 into R3, for example Fs = F+sX where X is a Cm+1,α axi-symmetric vector field
on M . Then the derivative DΠB(X) in (4.14) involves the terms X(λ − ν) and X(ν) (cf. (4.11))
which are only Cm−1,α and not Cm,α on M up to ∂M .13

Thus, the natural identification provided by Proposition 4.1

Φ : Em,α
S1 ' Em,αW ,

is a homeomorphism, but is not a C1 identification. In other words, for a C∞ curve of Cm+1,α

diffeomorphisms ϕs : M →M with ϕs 6= Id on ∂M , the curve (ϕ∗sg, ϕ
∗
su) is not in general a smooth

curve in the abstract space ES1 or E . In the abstract setting, the “location” of the boundary
∂M is not specified and the Bartnik boundary map should be viewed as a free boundary value
problem. Nevertheless, the lack of smoothness of the identification Φ is not an essential issue for
most purposes.

Despite the concrete setting of the Bartnik boundary map in (4.14), it does not appear to
be significantly easier to understand the validity of Conjectures I and II for Weyl metrics. For

13This loss of derivative for the action of diffeomorphisms on the space of metrics is well-known. Note that ΠB

is smooth when ν is, say, C∞ up to ∂M , so that ΠB is smooth in the context of Frechet manifolds. If (M, g, u)
extends to a slightly larger domain M ′, as in Remark 4.2, then ν is automatically as smooth as ∂M in M ′, since
static vacuum Einstein pairs (g, u) are analytic in the interior.
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instance, we are not aware of any substantially simpler proofs of Proposition 2.1 or Theorem 3.5 in
this setting.

To make some progress, let us consider a much simpler setting. Namely, fix the (global) potential
ν as in (4.13). Then ν, λ are globally defined, independent of the location of the boundary. Let

(4.15) Em,αν ⊂ Em,αW

be the subspace with potential fixed in this way. Clearly, Eν is a Banach submanifold. For the
restriction of the Bartnik boundary map to Eν , it is natural to drop the map to the mean curvature
(freezing a scalar field in the domain corresponds to freezing a scalar field in the target).14 This
leads to consideration of the Dirichlet boundary data map

(4.16) ΠD : Em,αν → M̂et
m,α

S1 (S2),

σ → F ∗g.

Here M̂et
m,α

S1 (S2) is the modification of Metm,α
S1 (S2) consisting of α, β as before with α ∈ Cm,α(θ)

but β ∈ Cm+1,α(θ). This modification is due to the different levels of differentiability of α and β
in (4.11).15 Also g = g(ν). Clearly (4.16) corresponds to the isometric embedding problem: given
an axially symmetric metric on S2, does there exist a (unique) isometric embedding into a Weyl
metric (M, g, u) with fixed u?

Consider first the case u = 1 so ν = 0 and g = gEucl. Now the map ΠD is not onto, i.e. not
every axi-symmetric metric on S1 is realized by an isometric embedding or immersion as a surface
of revolution in R3. The following is a well-known necessary condition.

Lemma 4.4. Let σ(θ) = (r(θ), z(θ)) be a Cm+1,α immersion into (R2)+ generating the surface of
revolution F with induced metric α2dθ2 + β2dϕ2. Then for all θ,

(4.17) α(θ) ≥ |β′(θ)|.
Further equality holds at the endpoints θ = 0, π, i.e. at the poles of the surface.

Proof. For such an immersion, one clearly has

(4.18) α2 = (r′)2 + (z′)2

(4.19) β = r,

so that

(4.20) (z′)2 = α2 − (β′)2 ≥ 0.

Since necessarily α > 0, this proves (4.17). Further, as noted above, smoothness at the poles implies
z′ = 0, proving the second statement.

Although it is obvious, it is worth pointing out explicitly that (4.19) shows that the function
r(θ) of σ(θ) = (r(θ), z(θ)) is uniquely determined by the metric γ. Thus we need only consider the
behavior of z in terms of the boundary data (α, β).

Let V0 ⊂ M̂et
m,α

S1 (S2) be the open set such that

(4.21) α(θ) > |β′(θ)|, ∀θ ∈ (0, π),

with β′(θ) = α(θ) for ϕ = 0, π. Let U0 = Π−1
D (V0) ⊂ Em,αν=0.

14Another natural choice would be to keep the mean curvature but take only the conformal class of the metric;
cf. [8] for further discussion.

15The regularizing property of the mean curvature is no longer present in this situation.
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Lemma 4.5. The map
ΠD : U0 → V0

is a diffeomorphism.

Proof. By (4.20), one has

(4.22) z′ = ±
√
α2 − (β′)2.

Since by hypothesis, z′ 6= 0 on (0, π), there is a unique choice of sign for z′. As noted following
(4.10), the choice of orientation of σ then gives

z′ = −
√
α2 − (β′)2,

on [0, π]. By integration, this then uniquely defines z under the normalization condition (4.8). As
noted above, the function r(θ) is already defined by β. Clearly, the curve σ is a graph over the
z-axis (except at the poles), so that σ is an embedding.

The remarks above prove that ΠD is a bijection on U0. It is also smooth, with derivative given
by

(4.23) DΠD(ρ, ζ) = (
1

α
(r′ρ+ z′ζ), ρ).

Since z′ 6= 0, KerDΠD = 0. Similarly, it is easy to see that DΠD is surjective, so that ΠD is a
diffeomorphism.

However DσΠD is no longer a Fredholm map at σ if

(4.24) (α− |β′|)(θ0) = 0,

i.e. z′(θ0) = 0, for some θ0 ∈ (0, π). Namely, to solve DΠD(ρ, ζ) = (q, ρ) as in (4.23) requires
r′ρ+ z′ζ = αq, so that

ζ =
αq − r′ρ

z′
,

where α, ρ, r′ and z′ are given. This is solvable only if αq − r′ρ vanishes on the zero-set of z′,
and the quotient ζ is then only Cm−1,α. Thus DΠD maps at most only onto a dense subset of a
codimension one subspace of Cm,α so that ΠD is not Fredholm.16

Next let V1 ⊂ M̂etS1(S2) be the subset such that

(4.25) χ(t) = α(θ)− |β′(t)| ≥ 0

with χ = 0 at only finitely many points θi ∈ [0, π], each of which is a non-degenerate minimum of
χ. As noted above, points where χ = 0 correspond to points where z′ = 0, i.e. the tangent line to σ
is horizontal. As simple examples show, one can no longer expect that curves having points where
z′ = 0 remain embedded in general.17 For this and related reasons, we modify (without changing
the notation) the definition of Eν=0 to

Emν=0 = Imm0
m+1(I)/Isom(R).

Thus, we have passed from oriented embeddings to unoriented immersions isotopic to embeddings
relative to the endpoints, changed (m,α) to m (since there are no longer any elliptic regularity
issues) and taken the quotient by action of the rotation invariant subgroup Isom(R) ⊂ Isom(R3),
consisting of translations along the z-axis A and reflections in planes z = const. The group Isom(R)
is the relevant group of Euclidean congruences.

16To avoid this loss of derivative, one could pass to C∞ maps and so Frechet spaces. While DσΠD would be
Fredholm if σ has isolated points where (4.24) holds to finite order, ΠD would not be a tame Fredholm map, due to
the factor (z′)−1.

17Compare with the discussion at the beginning of §3.
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As before, we have the Dirichlet (boundary) map

ΠD : Emν=0 → M̂et
m

S1(S2), σ → F ∗(gEucl).

As above, set U1 = (ΠD)−1(V1) ⊂ Emν=0. It is worth noting that neither V1 nor U1 is connected;
each space has many components. For instance, passing from points in U0 to points in U1 requires
passing through curves where χ(t) has degenerate minima.

Lemma 4.6. The smooth (but not Fredholm and so not proper) map

ΠD : U1 → V1,

is a bijection. Further KerDΠD = 0 everywhere.

Proof. Let (α, β) ∈ Vm1 be arbitrary. As with the proof of Lemma 4.5, the issue here is the
determination of the sign of z′ in terms of α, β. Once this is determined, z and hence σ = (r, z) is
determined as above.

We first note that the order of vanishing of z′ is completely determined by α, β. Namely, by
(4.20),

(4.26) z′z′′ = αα′ − β′β′′,
and

(4.27) (z′′)2 + z′z′′′ = (αα′)′ − (β′β′′)′.

Thus at θi where z′ = 0, whether z′′ 6= 0 or z′′ = 0 is completely determined by whether the
minimum of α− |β′| is a non-degenerate minimum or not.

Now starting at the pole θ = 0, we have either z′′ > 0 or z′′ < 0. Suppose z′′ > 0. Then the
sign of z′ and hence as before z and so σ, is uniquely determined up to first zero θ1 of χ. Since
z′′(θ1) 6= 0, by continuity the sign of z′ is uniquely determined slightly past θ1, so that σ is then
uniquely determined up to the second zero θ2 of χ. Proceeding in this way uniquely determines a
curve σ1 on [0, π] with ΠD(σ1) = (α, β).

If z′′(0) < 0, one may perform the same process, obtaining a curve σ2 also with ΠD(σ2) = (α, β).
However, up to translations along the z-axis, the Z2 reflection through the plane z = z(0) maps σ1

to σ2, so that σ1 and σ2 are congruent and represent the same point in U1. This proves ΠD is a
bijection on U1. The second statement follows easily from (4.23) as above.

One may proceed inductively in this way to higher order degeneracies of z′. Thus, let V2 ⊂
M̂et

m

S1(S2) be the subset such that the minima θi ∈ (0, π) of χ are non-degenerate at order either 2
or 4; note that V1 ⊂ V2. As before, set U2 = (ΠD)−1(V2) ⊂ Emν=0. Differentiating (4.27) twice gives

3(z′′′)2 + 4z′′z(4) + z′z(5) = (αα′)′′′ − (β′β′′)′′′ = 1
2((α2)(4) − (β2)(5)).

Thus, for σ ∈ U2 (with m ≥ 4) if z′(θi) = z′′(θi) = 0 for some θi, then z′′′(θi) 6= 0.
Note that smoothness requires z′′′ = 0 at the poles 0, π. In any case, choose a generic point

θ̄ sufficiently near 0 so that (αα′ − β′β′′)(θ̄) 6= 0. By (4.26), z′(θ̄) 6= 0 and z′′(θ̄) 6= 0. Suppose
z′′(θ̄) > 0. Then the sign of z′ is uniquely determined by α, β and so by (4.22), z is uniquely
determined by α, β near θ̄. The same arguments as above then show that (α, β) ∈ V2 uniquely
determine a curve σ1 ∈ U2. Again if z′′(θ̄) < 0, then the same construction produces another curve
σ2 ∈ U2 which is congruent in Isom(R) to σ1.

One may construct in the same way spaces Vk ⊂ Vk+1 ⊂ · · · , where Vk consists of metrics for
which χ has isolated zeros θi each of which is non-degenerate at some order ≤ 2k. This of course
requires m ≥ 2k. In the same way, given sufficient smoothness, one has the inclusion of ΠD-inverse
images Uk ⊂ Uk+1 · · · . The same proof of Lemmas 4.5 - 4.6 as above shows that

ΠD : Uk → Vk,
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is a bijection. Similarly, KerDΠD = 0 on Uk.
Suppose however σ ∈ Uk, m ≥ 2k is a curve for which there exist zeros θi and θj of χ (not

necessarily consecutive) at which χ vanishes at all orders ≤ 2(k − 1) and is non-vanishing at order

2k. Then the derivatives z(j) = 0 for all j ≤ k at θi and θj but z(k+1) 6= 0 at θi and θj . Suppose
also

z(θi) = z(θj).

One may perform a Z2-reflection of σ through the plane z = z(θi) over the interval [θi, θj ] to obtain
another curve σ̃ which agrees with σ outside [θi, θj ]. These two curves differ only by a local, not
global, Z2-reflection and so are non-congruent curves. Note however that while σ ∈ Emν=0, with
m ≥ 2k, σ̃ is only in Ekν=0, so that these curves are not in the same space. This loss of derivatives
can be cured (only) by going to C∞, and when z′ vanishes to infinite order at θi and θj . Thus there
are regions where ΠD becomes (at least) a 2− 1 map in certain regions in the C∞ context.

Finally, to conclude this discussion suppose that χ = α− |β′| on an open θ-interval (θ0, θ1). The
surface Σ = ImF is then a flat annulus in this region. Let f be any smooth function of compact
support in (θ0, θ1). Then the deformation

σs = σ + sfN,

N = ∂z, induces an infinitesimal isometric deformation of Σ, LfNγ = 0, Thus KerDΠD is now
infinite dimensional. Also, for any s and f as above, the surfaces Σ± generated by

σ± = σ ± sfN

are isometric but not congruent. Thus, one has here the 2− 1 fold behavior discussed in §2 and §3.
Summarizing, the discussion above proves:

Proposition 4.7. For any γ = (α, β) ∈ Met∞S1(S2) satisfying (4.17), there is a C∞ axi-symmetric

isometric immersion F : S2 → R3, so that

F ∗(gEucl) = γ.

The same result holds for Cm smoothness, for any 1 ≤ m <∞. However, in general the map

ΠD : Imm∞S1(S2)→ Met∞S1(S2),

may be finite-to-one or ∞-to-one.

Remark 4.8. All of the results above hold for general Eν as in (4.15), when the condition (4.17)
is replaced by

eλα ≥ |β′|,

where λ is determined from ν as in (4.7).

We also note that the infinitesimal rigidity (i.e. KerDΠD = 0) on the spaces Uk discussed above
fails badly when one considers non-axisymmetric embeddings of axi-symmetric metrics S2 → R3.18

There is a large classical literature on this, starting from the remarkable examples of Cohn-Vossen
[22], see also [34], [38], [36].

In conclusion, it would be interesting to understand if some of the complicated behavior of the
isometric embedding problem for surfaces of revolution in R3 exhibited above carries over to general
Weyl metrics and the corresponding Bartnik boundary map in (4.4) or more generally in (2.1).

18Thus the symmetry of the metric is not assumed apriori to extend to a symmetry of R3.
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5. Appendix

In this Appendix, we first collect several standard facts regarding static vacuum Einstein metrics.
Following this, we prove a regularity result for minimal surfaces in static vacuum spaces used in
the proof of Theorem 3.5.

On a Riemannian manifold (M, g) with (local) boundary (∂M, γ) the Gauss and Gauss-Codazzi
equations (also known as the Hamiltonian and momentum constraint equations) are:

(5.1) |A|2 −H2 + sγ = sg − 2Ric(N,N),

(5.2) δA+ dH = −Ric(N, ·),
where N is the unit normal to ∂M and δ is the divergence operator on ∂M . For static vacuum
Einstein metrics, sg = 0 and Ric(N,N) = u−1NN(u). Using the standard relation ∆gv = NN(v)+
HN(v) + ∆∂Mv, (5.1) gives

(5.3) 2u−1(∆∂Mu+HN(u)) = |A|2 −H2 + sγ .

Similarly, the static vacuum equations give Ric(N, ·) = u−1D2u(N, ·) = u−1(dN(u) − A(du)). It
follows that

(5.4) δ(uA) + udH = −dN(u).

or equivalently
δ(uA−N(u)γ) = −udH.

Next, consider the conformally related metric g̃ = u2g. Standard formulas for conformal change
of metric show that the static vacuum Einstein equations (1.4) are equivalent to the system

(5.5) Ricg̃ = 2dν · dν, ∆g̃ν = 0,

where ν = log u. Two advantages of these equations are that the Ricci curvature Ricg̃ is positive,
and second, the Ricci curvature is lower order (1st order) in ν, which is not the case for (1.4).

Next we turn to the regularity properties of local minimal surfaces (V, γ) in static vacuum
Einstein metrics (M, g, u). To begin, as in (3.9), assume a bound on Q in (3.13), so

(5.6) |sγ |+ |Rmg| ≤ C,
on (V, γ).

We first discuss what uniform control the bound (5.6) gives on the geometry of (M, g) and (V, γ).
It follows from the Cheeger-Gromov compactness theorem (or more simply from the uniformization
theorem in 2 dimensions) that γ is controlled, in harmonic coordinates, in C1,α. Similarly, g is also
controlled in C1,α, cf. also [12]. (In case the geometry is (arbitrarily) collapsed, one may unwrap
the collapse in universal covers and obtain the same conclusion).

Since H = 0, it follows first from the Hamiltonian constraint (5.1) that A is uniformly bounded
in L∞,

|A| ≤ C, on V.

Next, assume (as in §3) that u is normalized at a base point p ∈ V so that u(p) = 1. It then follows

from (5.3) and elliptic regularity for the Laplacian on (V, γ) that u is uniformly bounded in L2,p
loc ,

for any p <∞:

(5.7) |u|
L2,p
loc(V )

≤ C.

Since ∆gu = 0 on (M, g), elliptic regularity for the Laplacian on (M, g) implies that u is L2,p and
so C1,α up to ∂M :

(5.8) |u|
L2,p
loc(M)

≤ C,
29



locally near V . Hence N(u) is bounded in L1,p
loc and so in Cα on V . Finally, it then follows from

the momentum constraint (5.4) and elliptic regularity for the (δ, tr) elliptic system on (V, γ) that

A is bounded in L1,p
loc and so Cαloc on V :

(5.9) |A|Cαloc(V ) ≤ C.

The main step in proving regularity is the following result. Recall g̃ = u2g.

Lemma 5.1. The system

(5.10) Ricg̃ = 2dν · dν, ∆g̃ν = 0,

on (M, g̃, ν) with boundary conditions

(5.11) (γ̃, H)

where H = uH̃ − 2N(ν) on ∂M , is an elliptic boundary value problem in Bianchi gauge.

We note that H in (5.11) is the mean curvature of ∂M with respect to g.

Proof. It suffices to prove the result for the linearized system and for deformations h of gM satisfying
the Bianchi gauge condtion β(h) = δh+ 1

2dtrh = 0, where the divergence and trace are with respect

to the 4-metric gM as in (1.5). In the interior, the leading order term is just Ric′(h) ∼ −1
2∆g̃h,

which is elliptic with principal symbol −|ξ|2I. The proof that the boundary conditions (5.11) are

elliptic is exactly the same as that given in [7], [14] for the boundary conditions (γ̃, H̃); thus we
refer to [7] or [14] for details.

Proposition 5.2. Suppose (V, γ) is a (local) minimal surface in a static vacuum Einstein manifold
(M, g, u) satisfying the bound (5.6). Then the geometry of (V, γ) is bounded in the C∞ norm.

Proof. The proof follows the usual bootstrap method in elliptic PDE. To begin, by (5.8) we have

uniform C1,α control on ν. By (5.10) this gives uniform Cα control on R̃ic, and hence uniform C2,α

control on g̃ in the interior of M . Next, the Hamiltonian constraint (5.1) in the g̃ metric gives

|Ã|2 − H̃2 + sγ̃ = sg̃ − 2Ricg̃(Ñ , Ñ).

The right side is 1st order in ν, and Ã, H̃ are uniformly controlled in Cα by (5.9) and the control
on ν. Hence sγ̃ is uniformly controlled in Cα. As above, by the uniformization theorem (or

Cheeger-Gromov compacness theorem) it follows that γ̃ is uniformly controlled in C2,α modulo
diffeomorphisms, i.e. in harmonic coordinates. It then follows from boundary regularity for elliptic
systems, cf. [12] that g̃ is uniformly controlled in C2,α up to the boundary V . This in turn gives

C1,α control on H̃ = L
Ñ
dvg̃ and so, since H = 0, C1,α control on N(ν). Via the elliptic equation

∆̃ν = 0, this gives uniform C2,α control on ν up to the boundary V and hence uniform control of
g in C2,α up to the boundary V . This then also gives uniform control of A in C1,α on V .

This shows that the initial regularity of (M, g) up to the boundary (V, γ) has been increased by
one derivative. Iterating this process then proves the result.
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[23] T. H. Colding and W. P. Minicozzi II, A Course in Minimal Surfaces, Grad. Studies in Math., 121, Amer.

Math. Soc. Providence, RI, (2011).
[24] G. Galloway, On the topology of black holes, Comm. Math. Phys., 151, (1993), 153-166.
[25] S. W. Hawking and D. N. Page, Thermodynamics of black holes in Andi-de-Sitter space Comm. Math.

Phys., 87, (1983), 577-588.
[26] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J.

Differential Geom., 59, (2001), 353-437.
[27] W. Israel, Event horizons in static vacuum space-times, Phys. Rev., 164:5, (1967), 1776-1779.
[28] J. Jauregui, Smoothing the Bartnik boundary conditions and other results on Bartnik’s quasi-local mass, J.

Geom. Phys., 136, (2019), 228-243.
[29] D. Kramers, H. Stephani, M. MacCallum, E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambrige

Univ. Press, Cambridge, UK (1980).
[30] C. Mantoulidis and R. Schoen, On the Bartnik mass of apparent horizons, Classical & Quantum Gravity,

32, (2015), 205002.
[31] P. Miao, A remark on boundary effects for static vacuum initial data sets, Classical & Quantum Gravity,

22, (2005), L53-L59.
[32] P. Miao and N.Q. Xie, Bartnik mass via vacuum extensions, Int. Jour. Math., 30, (2019), 1940006.
[33] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity,

Annals of Physics (N.Y.), 88, (1974), 286-318.
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