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Abstract

This is a short version of my dissertation paper, defended in Decem-
ber 2004. It illustrates how dynamic complexity of a system evolves
under deformations. The objects I considered are quartic polynomial
maps of the interval that are compositions of two logistic maps. In
the parameter space P Q of such maps, I considered the algebraic
curves corresponding to the parameters for which critical orbits are
periodic, and I called such curves left and right bones. Using quasi-
conformal surgery methods and rigidity I showed that the bones are
simple smooth arcs that join two boundary points. I also analyzed
in detail, using kneading theory, how the combinatorics of the maps
evolves along the bones. The behavior of the topological entropy func-
tion of the polynomials in my family is closely related to the structure
of the bone-skeleton. The main conclusion of the paper is that the en-
tropy level-sets in the parameter space that was studied are connected.
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1 Previous work and summary of results

This paper illustrates how dynamic complexity of a system evolves under
deformations. This evolution is in general only partly understood. Attempts
to give a quantitative approach have considered simple examples of dynam-
ical systems and have made use of the topological entropy h(f) as a partic-
ularly useful measure of the complexity of the iterated map f . However, the
only results so far have been obtained in the case of interval polynomials of
degree 2 and 3.

The logistic family {fµ(x) = µx(1−x), µ ∈ [0, 4]} illustrates many of the
important phenomena that occur in Dynamics. The theory in this case is the
most complete (see [D]): µ → h(fµ) is continuous, monotonely increasing,
and different values h0 = h(fµ) are realized for a single µ in some cases, but
also for infinitely many in other cases. The cubic polynomials on the unit
interval are organized as a 2-parameter family. In the compact parameter
space of this family, the level sets of the entropy, called isentropes, were
proved to be connected ([DGMT] and [MT]).

In general, families of degree d polynomials depend on d−1 parameters,
so the same concepts are harder to inspect for higher degrees. It is most
natural to research next a family of quartic polynomials that depends only
on two parameters. This paper focuses on showing the Connected Isen-

tropes Conjecture for the parameter space P Q of the family of alternate
compositions of two logistic maps ([R]). The work is organized as follows:

I briefly study the more general combinatorics of 2n-periodic orbits under
alternate iterations of two (+,−) unimodal interval maps.

I introduce a way to keep track of the succession of the orbit points
along the unit interval I by defining the order-data as a pair of permutation
(σ, τ) ∈ S2

n. If under alternate iterations of the two maps h1 and h2 the
two critical orbits are periodic, their order-data turns out to be strongly
connected to the kneading-data of the composition h2 ◦ h1.

For a given order-data (σ, τ), I define the left/right bones in the param-
eter space PQ to be the subsets for which either critical point has periodic
orbit of order-data (σ, τ). The bones are algebraic curves , and by definition
left bones can only intersect right bones. A crossing is called a primary in-
tersection if it corresponds to a pair of maps with common periodic bicritical
orbit and secondary intersection, if it corresponds to a pair of maps with
disjoint critical orbits.

To obtain combinatorial properties of the bones, I compare the space P Q

with a model space of compositions of stunted tent maps. This technique
is not accidental; the stunted sawtooth maps are generally useful models
in kneading-theory, because they are rich enough to encode in a canonical
way all possible kneading-data of m-modal maps. The combinatorial results
make crucial use of Thurston’s Uniqueness Theorem, and of an extension of
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it due to Poirier , interpreted by [MT].

In two following sections, I complete the description of the bones with
two essential properties.

The bone-curves are C1-smooth and intersect transversally. Smoothness
follows as in [M] at parameter points inside the hyperbolic components of
PQ. If the parameter point is outside these components, a quasiconformal
surgery construction is necessary in order to perturb a map with a super-
attracting cycle to a map having an attracting cycle with small nonzero
multiplier.

The bones are simple arcs in P Q with two boundary points on ∂P Q,
in other words they contain no loops. [MT] proved the similar assertion in
the case of cubic polynomials, either assuming true the well-known Fatou
Conjecture or using a weaker theorem due to Heckman. I use instead a
quite new and interesting rigidity result of [KSvS], that delivers density of
hyperbolicity in my parameter space.

I define the n-skeleton SQ
n in PQ to be the union of all bones of period

at most 2n , together with the boundary of the space. I put a dimension 2
topological cell structure on P Q as follows: the 0-cells are all intersections
of bones in SQ

n and all boundary points of bones in SQ
n ; the 1-cells are the

1-dimensional connected components obtained by deleting the 0-cells from
the n-skeleton; the 2-cells are the 2-dimensional connected components of
the complement of SQ

n .

The relations between entropy and the sequence of cell complexes is
emphasized in the last section of the paper. If two points in P Q correspond
to distinct values of the entropy, then any path connecting them crosses
infinitely many bones. In more technical phrasing: for any ε > 0, there is
a large enough n for which the corresponding cell complex is fine enough
to have variation of entropy less than ε on each of its closed cells. These
considerations permit me to transport some topological properties of the
isentropes from the previously mentioned model space to similar properties
of isentropes in PQ. More precisely, contractibility of isentropes in the
stunted tent maps model space translates as connectedness of isentropes in
PQ.

2 Combinatorics

2.1 A discussion on the kneading-data

Let h : I → I be an m-modal map of the interval, i.e. there exist
0 < c1 ≤ c2 ≤ ... ≤ cm < 1 “folding” or “critical points” of h such that h
is alternately increasing and decreasing on the intervals H0, ...,Hm between
the folding points.
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I =
m
⋃

k=0

Hk ∪
m
⋃

j=1

{cj}

We say that h is of shape s = (+,−,+, ...) if h is increasing on H0 and of
shape s = (−,+,−, ...) if h is decreasing on H0. We say that h is strictly
m-modal if there is no smaller m with the properties above.

We define the itinerary =(x) = (A0(x), A1(x), ...) of a point x ∈ I under
h as a sequence of symbols in A = {H0, ...,Hm} ∪ {c1, ..., cm}, where

{

Ak(x) = Hj , if f◦k(x) ∈ Hj

Ak(x) = cj , if f◦k(x) = cj

The kneading sequences of the map h are defined as the itineraries of its
folding values:

Kj = K(cj) = =(f(cj)), j = 1,m − 1

The kneading-data K of h is the m-tuple of kneading-sequences:

K = (K1, ...,Km)

The simplest example of an m-modal map is a sawtooth map with m
teeth (see figure 1.1(a)).

0 c1 c2 cm−1 0 c1 c2 cm−11 1

Figure 1: (a)Sawtooth map of the interval. (b)Stunted sawtooth map

We call a stunted sawtooth map a sawtooth map whose vertexes have
been stunted by plateaus placed at chosen heights (see figure 1.1(b)).Its
critical points are considered to be the centers of the plateaus. In the next
sections we will focus our attention specifically on tent maps (1-modal saw-
tooth maps) and on their stunted version, which we will call stunted tent
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maps.

Another simple and rich example of m-modal maps is the collection of
(m − 1)-degree polynomials from I to itself. The “folding points” could be
taken in this case to be the critical points of the polynomial (in the classical
sense) of odd order. In the context of polynomial m-modal maps, we have
a powerful tool to use in the statement of Thurston’s Uniqueness Theorem.

Definition 2.1. A polynomial map is called post-critically finite if the orbit
of every critical point is periodic or eventually periodic.

Theorem 2.2. Thurston Uniqueness Theorem for Real Polynomial

Maps: A post-critically finite real polynomial map of degree m+1 with m
distinct real critical points is uniquely determined, up to a positive affine
conjugation, by its kneading data.

We will also use a converse of this basic theorem of Thurston, due to
Poirier (as interpreted by [MT]).

Definition 2.3. We say that a symbol sequence =(x) = (A0(x), A1(x), ...)
is flabby if some point of the associated orbit which is not a folding point
has the same itinerary as an immediately adjacent folding point. A symbol
sequence is called tight if it is not flabby. The kneading data of a map is
tight if each of its kneading sequences is tight.

Lemma 2.4. The kneading data of a stunted sawtooth map is tight if and
only if the orbit of each folding point never hits a plateau except at its critical
point.

Theorem 2.5. Suppose that the m-modal kneading data K is admissible for
some shape s, with Ki 6= Kj for all i. There exists a post-critically finite
polynomial map of degree m+1 and shape s with kneading-data K if and only
if each Ki is periodic or eventually periodic, and also tight. This polynomial
is always unique when it exists, up to a positive affine change of coordinates,
or as a boundary anchored map of the interval.

2.2 Definitions and first goals

In the light of the general definition given in section 2.1, a boundary
anchored, (+,-) unimodal map of the unit interval is a h : I = [0, 1] → I such
that h(0) = h(1) = 0 and such that there exists γ ∈ (0, 1), called folding or
critical point, with h increasing on (0, γ) and decreasing on (γ, 1). The orbit
of a point x ∈ I under a such h will be the sequence of iterates (h◦n(x))n≥0.
The itinerary of x under h is the sequence (J0, J1, ...) of symbols L (left), R
(right) and Γ (center, or critical) such that:
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





Jj = L, if h◦j(x) < γ
Jj = R, if h◦j(x) > γ
Jj = Γ, if h◦j(x) = γ

The next few sections of this paper are dedicated to study the combi-
natorics of the dynamical system I am considering: generated by alternate
iterates of two unimodal interval maps. In this sense, it is convenient to
consider two copies of the unit interval I1 = I2 = I and think of our pair
of maps (h1, h2) as a self map of the disjoint union I1 t I2 → I1 t I2, which
carries I1 to I2 as h1 and I2 to I1 as h2, with critical points γ1 ∈ I1 and
γ2 ∈ I2, respectively.

We call an orbit under the pair (h1, h2) a sequence:

x → h1(x) → h2(f1(x)) → h1(h2(h1(x)))...

We say a such orbit is critical if it contains either critical point γ1 or γ2 and
we say it is bicritical if it contains both. We call the itinerary of a point x
under (h1, h2) the infinite sequence =(x) = (Jk(x))k≥0 of alternating symbols
in {L1,Γ1, R1} and {L2,Γ2, R2} that expresses the positions of the iterates
of x in I1 and I2 with respect to γ1 or γ2.

Clearly, not all arbitrary symbol sequences are in general admissible as
itineraries of a point under a pair of given maps.

It is fairly easy to show that for a fixed pair (h1, h2) of (+,−) unimodal
maps, the pair of critical itineraries (=(γ1),=(γ2)) determines the kneading-
data of h2 ◦ h1 and conversely. In particular this applies to pairs of stunted
tent maps and to pairs of logistic maps (which are the object of this paper).

For a given pair of maps (h1, h2), I will use the regular total order on
admissible itineraries (see [CE]), which is consistent with the order of points
on the real line:

=(x) < =(x′) ⇒ x < x′

x < x′ ⇒ =(x) ≤ =(x′)

We say that the orbit of x is periodic of period 2n under (h1, h2) if n is
the smallest positive integer such that (h2 ◦ h1)

◦n(x) = x (i.e. x has period
n under the composition (h2 ◦ h1)) . I will use the following notation for a
2n-periodic orbit under (h1, h2):

x1 = xi1
h1−→ yj1

h2−→ xi2
h1−→ ...

h1−→ yjn

h2−→ xi1 (1)

where (xi)i=1,n ⊂ I1 and (yj)j=1,n ⊂ I2 are both increasing.

Definition 2.6. The order-data of the periodic orbit (1) is the pair (σ, τ)
of permutations in Sn given by:
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h1(xi) = yσi

h2(yj) = xτj
,

so that σik = jk and τjk
= ik+1. (Here the subscripts must be understood

as integers mod n, e.g. in+1 = i1 = 1.)

An admissible order-data is a (σ, τ) ∈ S2
n which is achieved as order-data

of a periodic orbit of some pair (h1, h2) of interval unimodal maps.

The (+,-) unimodal shape of h1 and h2 imposes a set of necessary and
sufficient conditions for a (σ, τ) to be “admissible”:

(I)

{

If σi+1 < σi , then σj+1 < σj ,∀j ≥ i
If τi+1 < τi , then τj+1 < τj ,∀j ≥ i

(II) τ ◦ σ is a cyclic permutation (i.e. has no smaller cy-
cles).

σ = (123), τ = (231) σ = (132), τ = (321) σ = (231), τ = (123)

σ = (231), τ = (231) σ = (321), τ = (132)

Figure 2: All admissible order-data (σ, τ)of period 2n = 6. Each schetch
represents the interval I = I1 on top, with the orbit points x1 < x2 < x3 and
the interval I = I2 undernieth, with the orbit points y1 < y2 < y3.

A first goal will be to research the relation between the itinerary and the
order-data of a periodic critical orbit.

Suppose γ1 is periodic of period 2n under (h1, h2) and let x1 = xi1 →
yj1 → ... → yjn → xi1 be its orbit. Then the order-data (σ, τ) ∈ S2

2n of the
orbit determines its itinerary via the position of the element yjl

∈ I2 closest
to γ2. In other words, there are at most two critical itineraries corresponding
to a given order-data. If in particular the orbit is bicritical, then yjl

= γ2

and the itinerary is completely defined.
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Note also that the order of points in a critical periodic orbit of a (+,−)
unimodal map is strictly preserved in the order of their itineraries, i.e. x < x′

implies =(x) < =(x′). Hence conversely, knowing the itinerary = of the
bicritical orbit, we can obtain the order of occurence of the orbit points in
I1 and I2. This proves the following:

Theorem 2.7. If the orbit of γ1 is bicritical of period 2n under a pair of
(+,-) unimodal maps (h1, h2), then the itinerary of γ1 determines the order-
data of the orbit and conversely.

2.3 Parameter spaces

We plan to study in more detail the dynamics of a particular family of
such pairs of interval unimodal maps that we have generally described in
the previous section.

Recall that the logistic map (with critical value v) is defined as qv(x) =
4vx(1−x), x ∈ R. Clearly qv(0) = qv(1) = 0, for any value of the parameter
v. Moreover, for values of v ∈ [0, 1], qv carries the unit interval to itself, so
it is a boundary anchored, (+,−) unimodal interval map.

Our goal is to study the dynamics of compositions of pairs of such maps:
qw ◦ qv, where (v, w) ∈ [0, 1]2. We call the family of pairs (qv, qw) of logistic
maps of the unit interval the Q-family, and we parametrize it by the pair
of critical values, so that the parameter space will be:

PQ = {(v, w) ∈ [0, 1] × [0, 1]} = [0, 1]2

The behavior of the pairs in the Q-family is not very well-understood.
We will compare it to the dynamics in a “model” family much easier to
research, the family of pairs of stunted tent maps:

stv : I1 → I2, γ1 =
1

2

stw : I2 → I1, γ2 =
1

2

where

stv(x) =







2x if x ≤ v
2

v if v
2 ≤ x ≤ 1 − v

2
2 − 2x if x ≥ 1 − v

2

Recall that the “critical point” of such a stunted tent map was taken by
convention to be the midpoint γ = 1

2 , hence the critical value is st(γ) = v.
We call the family of pairs of such maps the ST-family. Its corresponding
parameter space will be denoted by:

PST = {(v, w) ∈ [0, 1] × [0, 1]}
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We aim to obtain dynamical results in P Q = [0, 1]2. However, proving
similar results in the parameter space P ST = [0, 1]2 of “approximating”
stunted tent maps would be a good start. Comparison of the two spaces will
be a strategy very frequently used within the combinatorics sections. The
strong topological correspondence between the two families will eventually
be sustained with a rigurous proof and will enable us to translate topological
properties from one to the other.

2.4 The combinatorics in the ST-family

I will focus next on how the combinatorics in section 2.2 applies to the
model family I am interested in, namely the ST -family:

Theorem 2.8. Given (σ, τ) ∈ S2
n admissible order-data, there is a unique

pair of stunted tent maps (stv, stw) with periodic bicritical orbit of order-data
(σ, τ).

Proof. Let = be a sequence of alternating symbols in {L1, R1,Γ1} and
{L2, R2,Γ2}, admissible as a bicritical itinerary of period 2n under a pair of
unimodal maps:

= = (J0 = Γ1, J1, J2, ..., J2l, J2l+1 = Γ2, J2l+2, ..., J2n−1, J2n = Γ1, ...)

where J2n+k = Jk for all k and Jk 6= Γ1,Γ2, for all k nonequivalent to 1, ..., 2l
mod 2n. There exists a unique pair of stunted tent maps (stv, stw) that has
a bicritical orbit of period 2n:

x1 = xi1 → yj1 → ...yjn → xi1 = x1

having = as its itinerary.
To prove the existence, it is easier to consider an orbit through a pair

of tent maps that has the respective itinerary, then stunt the maps at the
highest values of the orbit in I1 and I2, respectively. The uniqueness fol-
lows: starting with the critical points γ1 and γ2, iterate backwards using the
itinerary = to obtain the values of v and w.

Going back to the proof of our theorem: given an admissible order-data
(σ, τ) ∈ S2

n for a required bicritical orbit, we can determine the itinerary =
of the orbit. As shown above, we can find a unique pair (stv, stw) of stunted
tent maps with a bicritical orbit of length 2n and itinerary =. By Theorem
1.3.2, the order-data for the orbit we have found will be (σ, τ). 2

To make the discussion a step more general, we look next at pairs of ar-
bitrary unimodal maps for which both critical points γ1 and γ2 are periodic.
There are two possible cases that can occur: a bicritical orbit (discussed
earlier) and two disjoint critical orbits.
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Definition 2.9. Let (σ, τ) ∈ S2
m+n be a pair of permutations decomposable

into two cycles: (σ1, τ1) ∈ S2
m and (σ2, τ2) ∈ S2

n. We say that two disjoint
periodic orbits o1 and o2 under a pair (h1, h2) of (+,-) unimodal maps have
joint order-data (σ, τ) if:

1. o1 has order-data (σ1, τ1) and o2 has order-data (σ2, τ2);

2. the order of the points in I1 and I2 is given by (τ ◦ σ) and (σ ◦ τ)
respectively. (see “order-type” [MT])

We will say about a permutation (σ, τ) ∈ Sm+n that it is “admissible”
as a joint order-data, if there exist two disjoint orbits under some pair of
(+,-) unimodal maps which have joint order-data (σ, τ).

Similarly as for regular order-data, one can obtain the following two
results:

Theorem 2.10. Let o1 and o2 be disjoint critical orbits under a pair (h1, h2)
of (+,-) unimodal maps. Their itineraries determine their joint order-data
and conversely.

Theorem 2.11. Given (σ, τ) = ((σ1, τ1), (σ2, τ2)) ∈ S2
m+n admissible joint

order-data, there exists a unique pair (stv, stw) of stunted tent maps with
disjoint critical orbits o1 3 γ1 and o2 3 γ2 having joint order-data (σ, τ).

2.5 Description of bones in the ST-family

Definition 2.12. Fix an admissible order-data (σ, τ) ∈ S2
n. By a left bone

in the parameter space I2 × I1 for the ST -family we mean the set of pairs
(v, w) ∈ I2 × I1 = [0, 1]2 such that the critical point γ1 ∈ I1 has under
(stv, stw) a periodic orbit of given period 2n and given order-data (σ, τ).

We will use the notation BST
L (σ, τ), or BST

L if there is no ambiguity.
We define a right bone symmetrically (i.e. we require γ2 to be periodic of
specified period and order-data) and we denote it by BST

R (σ, τ), or BST
R . We

will need later a more comprehensive approach to the left and right bones
and their properties.

Recall (from theorem 2.8) that: There is a unique pair (v0, w0) ∈ BST
L

such that the periodic orbit of γ1 is bicritical (i.e. hits γ2) under (stv0, stw0).

Theorem 2.13. For each admissible order-data (σ, τ), let (v0, w0) be the
parameter pair for the associated bicritical orbit in the ST -family. Then
there are unique numbers v1 < v0 < v2 so that the left bone BST

L (σ, τ) is the
union {v1, v2}× [w0, 1]∪ (v1, v2)×{w0} of three line segments, as illustrated
in figures 3 and 4. The description of the right bone BST

R (σ, τ) is completely
analogous.
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2 4 6

4 6

6

6

6

Figure 3: Left bones in the ST-family of period at most 6.We marked by (2)
the unique bone of period 2, corresponding to order-data in (σ = (1), τ =
(1)) ∈ S2

1 . (4) are the 2 bones of period 4 and having the two possible order-
data (σ = (12), τ = (1)(2)) or (σ = (1)(2), τ = (12)) ∈ S2

2 . (6) are the bones
of period 6 and one of the 5 admissible order-data: (σ = (123), τ = (231),
(σ = (132), τ = (321)), (σ = (231), τ = (231)), (σ = (321), τ = (132)) or
(σ = (231), τ = (123))

We can determine the shape of BST
L , hence prove 2.13, by constructive

means, starting with the point (v0, w0).
Under (stv0, stw0): γ1 → v0 → ... → γ2 → w0 → ... → γ1. The bicritical

orbit only hits each plateau once, at its center.
By sliding the first plateau up and down, the orbit of γ1 will change in

a continuous way. For a fixed height v of the first plateau, call yl(v) the
element in I2 closest to γ2 in the orbit of γ1 under (stv, stw). Clearly, if
v = v0, then yl(v0) = γ2.

We can move v continuously within an interval [v1, v2] = [v0 − ε, v0 +
ε], ε > 0 such that yl(v) moves from w0/2 to 1 − w0/2. Along the process,
the orbit stays periodic and the order of the occurrence of points remains
consistent with (σ, τ).

It is not hard to see that BST
L = t = t(σ, τ) = {v1, v2} × [w0, 1] ∪

(v1, v2) × {w0}.
In particular, there are exactly two values v = v1 and v = v2 such that

the orbit of γ1 has given order-data (σ, τ) under (stv, st1) (i.e. there are
exactly two points of BST

L on [0, 1] × {1}).

2.6 Important points on the bones

We aim to compare the parameter spaces for the two families: the Q-
family and the ST -family.
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(v0, w0)

(v1, w0)

(v1, 1) (v2, 1)

(v2, w0)

Figure 4: BST
L = t = {v1, v2} × [w0, 1] ∪ (v1, v2) × {w0} 3 (v0, w0)

In either space, we consider the left and right 2n-bones for a given ad-
missible (σ, τ) ∈ S2

n:

BL(σ, τ)= the set of all parameters for which γ1 has periodic orbit of
order-data (σ, τ) under the respective pair of maps

BR(σ, τ)= the set of all parameters for which γ2 has periodic orbit of
order-data (σ, τ) under the pair of maps

For any fixed admissible (σ, τ) ∈ S2
n, I will call the bones in P ST : BST

L ,

BST
R and the ones in PQ: BQ

L , BQ
R .

Remarks: (1) In either parameter space, any two left bones are disjoint
and any two right bones are disjoint by definition.

(2) It follows easily from theorem 2.13 that two bones in the ST-family
can cross only in 0,2 or 4 points.

Definition 2.14. In either parameter space, an intersection of BL(σ1, τ1)
and BR(σ2, τ2) is called a primary intersection if (σ1, τ1) = (σ2, τ2) and there
is a bicritical orbit with this order-data under the pair of maps. It is called
a secondary intersection if the two critical orbits are disjoint, of distinct
order-data (σ1, τ1) and respectively (σ2, τ2), and joint order-data (σ, τ). A
capture point on BL(σ1, τ1) in either P ST or PQ is a pair of maps for which
γ2 eventually maps on γ1 such that it has an eventually periodic, but not
periodic, orbit. We define symmetrically a capture point on BR(σ2, τ2).

Theorem 2.8 equipped us with a bijection between admissible order-data
and primary intersections in P ST . Theorem 2.11 extended the result with
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y1

x1

y2 y3

x2 x3

(σ, τ) = ((231), (321))

y1

x1

y2 y3

x2 x3

(σ, τ) = ((132), (231))

Figure 5: Combinatorics of the two secondary intersections of a period 4 left
bone with a period 2 right bone.

a bijection between admissible joint order-data and secondary intersections.
The next statement is a further extension for capture itineraries and can be
proved similarly with the direct implication in theorem 2.11.

Theorem 2.15. Suppose the two critical points of a pair of unimodal maps
are such that one of them has a closed orbit and the other maps on this closed
orbit after a finite number of iterates, but without being periodic itself. Let
=1 and =2 be the itineraries of the two critical points. Then there exists at
least a pair (stv, stw) with critical itineraries =1 and =2, respectively. (i.e.:
There exists at least a capture point in P ST with given “capture” critical
itineraries.)

2.7 More on kneading-data

In this section we will construct a bijective correspondence of bones in-
tersections between our two parameter spaces P ST and PQ. For the proof,
it is necessary to view the composition qw ◦ qv of two logistic maps either
as a 3-modal map with three critical points in I = I1: c1 ≤ c2 ≤ c3, with
c2 = γ1 and qv(c1) = qv(c3) = γ2 or as a unimodal map with folding point
γ1, in case qv(x) = γ2 has a double real root or two complex roots. I will use
rigidity theorems that involve essentially properties of the kneading-data.

Let us look in more detail at the possible kneading-data of the maps in
PST and PQ.

Maps in PST : For any (v, w) ∈ P ST , the map stw ◦ stv could be
considered 3-modal, with folding points c1 = 1

4 , c2 = γ1 = 1
2 and c3 = 3

4 .

AST = {[0,
1

4
),

1

4
, (

1

4
,
1

2
),

1

2
, (

1

2
,
3

4
),

3

4
, (

3

4
, 1]}

.
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Figure 6: The left 4-bone of order-data (σ, τ) = ((1, 2), (2, 1)) crosses
the right 2-bone at two secondary intersections with joint order-data
((231), (321)) and ((132), (231)) (filled dots, also see figure 5) and crosses the
corresponding right 4-bone at a primary intersection with order-data (σ, τ)
and at a secondary intersection with joint order-data ((1243), (3421)) (empty
dots).

and

KST = (K(c1),K(c2),K(c3))

We can consider P ST as made of three parts: P ST = PST
1 ∪PST

2 ∪PST
3 ,

where PST
1 = {(v, w) ∈ [0, 1]2, w ≥ 2v}, PST

2 = {(v, w), w < 2v, w ≤
2 − 2v} and PST

3 = {(v, w), w > 2 − 2v}.

I. Clearly there are no right bones in P ST
1 , hence no bones intersections.

II. PST
2 contains no secondary intersections, since w

2 ≤ v ≤ 1 − w
2 , so

stw(γ2) = w = (stw ◦ stv)(γ1).
Moreover, if (v, w) ∈ P ST

2 is a primary intersection, then the map stv◦stw
is strictly 3-modal, with only one exception: (v, w) = ( 1

2 , 1
2).

III. For (v, w) ∈ P ST
3 we clearly have that stw ◦ stv is strictly 3-modal,

hence K(c1) = K(c3) 6= K(c2).

Maps in PQ: The behavior of the degree 4 polynomials in the Q-family
is also different for distinct values of the parameters.

I. If v < 1
2 , then qw ◦ qv has only one real critical point C2 = γ1 = 1

2 and
two complex C1, C3 ∈ C\R.

This parameter subset will be of somewhat less interest, as it is not
crossed by any right bones, hence contains no bones intersections. Indeed,
if qv(x) < 1

2 , ∀x ∈ I1, no orbit can go through γ2.
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Figure 7: A few examples of behavior of maps in P Q. The critical points
of the quartic map qw ◦ qv are distinct and real for v > 1

2 ,all coincide for
v = 1

2 , while two of them are complex for v < 1
2 .

II. If v = 1
2 , then qw ◦ qv has a degenerate real critical point C1 = C2 =

C3 = γ1. This line contains primary intersections with right bones. More
precisely, if a left bone hits {v = 1

2}, then the crossing point is its primary
intersection. However, in this case qv ◦ qw is strictly 3-modal, with the ex-
ception of v = w = 1

2 , which is the period 2 primary intersection.

III. If v > 1
2 , there are three distinct real critical points for qw ◦ qv:

C1 < C2 = γ1 < C3, with qv(C1) = qv(C3) = γ2

The map is 3-modal:

AQ = {[0, C1), C1, (C1, C2), C2, (C2, C3), C3, (C3, 1]}

.
and

KQ = (K(C1),K(C2),K(C3))

Remark. We emphasize that qw ◦ qv has complex critical points iff v < 1
2 .

If the point (v, w) is on a bone, it cannot be in the region {v < 1
2 , w < 1

2},
so w ≥ 1

2 . Hence in this case the map qv ◦ qw corresponding to the sym-
metric point (w, v) on the corresponding right bone has real critical points,
non-degenerate if w 6= 1

2 .
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A correspondence is already apparent between the shape and position of
two left bones with identical order-data in the two spaces P ST and PQ. For
instance, the unique primary intersection of period two: (v, w) = ( 1

2 , 1
2) ∈

PST clearly corresponds combinatorialy to the identical point (v, w) =
(1
2 , 1

2) ∈ PQ. We will consider at least this case classified in our future anal-
ysis. The following theorems will therefore concern specifically the strictly
3-modal case ( applicable for either stw◦stv and qw◦qv or stv◦stw and qv◦qw).

2.8 The correspondence of the

bones intersections

I use Thurston’s Theorem and its extension for boundary anchored poly-
nomials of degree four and shape (+,-,+,-) to construct in this section a
bijection between bones crossings in the two parameter spaces. For the rest
of section 2, we will adapt our notation to distinguish between parameters
(v, w) ∈ PST and parameters (v′, w′) ∈ PQ.

Theorem 2.16. Let (σ, τ) ∈ S2
n be admissible order-data. There is a unique

primary intersection (v′, w′) in PQ with this data and conversely.

Proof. Uniqueness: Suppose we have a pair (v, w) ∈ P Q with a bicritical
orbit of order-data (σ, τ). We implicitly know the itinerary of the bicritical
orbit, hence the kneading sequences of the three real distinct critical points
C1 < C2 = 1

2 < C3 of qw ◦ qv ( if v > 1
2) or qv ◦ qw (if w > 1

2). By Thurston’s
Theorem, the boundary anchored polynomial of degree 4 with the expected
kneading data is unique, implying the uniqueness of the pair (qv, qw) with
the given order-data.

Existence: Let (stv, stw) be the pair of stunted tent maps with bicritical
orbit of order-data (σ, τ). We know by theorem 2.7 that we can determine
the itinerary of this bicritical orbit. If we exclude the case v = w = 1

2 , which
is already classified, then either stw ◦ stv or stv ◦ stw is strictly 3-modal (say
stw ◦ stv, to fix our ideas). We know the kneading-data K for stw ◦ stv,
which should also be the kneading-data for the polynomial qw′ ◦ qv′ that we
want to find. We hence need to prove existence of a polynomial of degree
4 with the required kneading-data K and then show that it can be written
as a composition of two logistic maps qv′ and qw′ . We will finally show that
the pair (qv′ , qw′) we found has indeed the given order-data.

Each two consecutive kneading-sequences of K are distinct. Also, each
K(ci) hits each plateau of stw ◦ stv at most once, above its corresponding
critical point. So, by lemma 2.4, all kneading sequences of K are tight.

By Thurston’s Theorem, these imply existence and uniqueness of a poly-
nomial P with kneading-data K, of shape (+,-,+,-) and conditions at the
boundary P (0) = 0 and P (1) = 0 . A boundary anchored polynomial P of
degree 4, shape (+,-,+,-) and real distinct critical points 0 < C1 < C2 <

15



C3 < 1 is a composition of logistic maps if and only if P (C1) = P (C3).
Indeed, we know that the kneading sequences K(C1) = K(c1) and K(C3) =
K(c3) are identical. Suppose P (C1) < P (C3). Then the whole interval
[P (C1), P (C3)] will have the same (bicritical) itinerary, as K(C1) = K(C3),
so, after a finite number of iterations under P , it will all map to C2, con-
tradiction. So P (C1) = P (C3), hence there exists a pair of quadratic maps
such that P = qw′ ◦ qv′ .

The kneading data K determines the itinerary of the bicritical orbit and
its order-data. So the polynomial map we found can only have the given
order-data (σ, τ). 2

Very similarly we can prove the equivalent statement for secondary in-
tersections:

Theorem 2.17. Let (σ, τ) ∈ S2
m+n admissible joint order-data. There is a

unique secondary intersection in PQ with this data and conversely.

2.9 The correspondence of the

boundary points

Fix (σ1, τ1) ∈ S2
n. The left bone BST = BST

L (σ1, τ1) in PST with order-
data (σ1, τ1) is as an algebraic curve in P ST = I2 × I1 = I2. Its boundary
consists of two points:

δBST = BST ∩ δPST = BST ∩ (I2 × {1}) = {(v1, 1), (v2, 1)}

with v1 < v2.
For any (v, w), I will call =ST (x)(v, w) the itinerary of x under (stv, stw)

and KQ(v, w) the kneading-data of stW ◦ stv.
The itineraries of the critical points γ1 and γ2 under (stv1 , st1 and (stv2 , st1)

are respectively:

=ST (γ1)(v1, 1) 6= =ST (γ1)(v2, 1)

=ST (γ2)(v1, 1) = =ST (γ2)(v2, 1) = (Γ2, R1, L2, L1, L2, L1, ...) = (Γ2, R1, L2, L1)

At any (v, w) ∈ BST , γ1 has a periodic orbit o1 of period 2n and order-
data (σ1, τ1). At the two boundary points (v1, 1), (v2, 1) ∈ δBST , the orbit
o2 of γ2 is also finite, although not periodic.

Statements in previous sections referred to primary or secondary inter-
sections of bones. I will need some extensions of these statements to apply
to boundary points of left bones in either parameter space. As we have
noted, these boundary points are not bones crossings.
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We expect the boundary of the corresponding quadratic left bone BQ =
BQ(σ1, τ1) to look similarly.

Theorem 2.18. The boundary of BQ(σ1, τ1) = BQ consists of exactly two
distinct points in [0, 1] × {1} ⊂ δP Q.

Proof. Consider the corresponding ST -left bone BST (σ1, τ1) and its
boundary points (v1, 1) and (v2, 1). The maps stvi

◦ st1 have kneading-data
KST(1, vi). For each i, the adjacent kneading-sequences are distinct.

For each i ∈ {1, 2}, the pair of critical itineraries at (1, vi) determines the
respective kneading-data KST(1, vi). Note that =ST (γ1)(v1, 1) 6= =ST (γ1)(v2, 1),
so KST(1, v1) 6= KST(1, v2). The kneading-data also satisfies for each i
the conditions in the extended version of Thurston’s theorem: the knead-
ing sequences are finite and tight and KST (1, vi)(c1) = KST (1, vi)(c3) 6=
KST (1, vi)(c2). Hence for each i there exists a point (w′

i, v
′
i) ∈ PQ such that

qv′

i
◦ qw′

i
has kneading-data KQ(w′

i, v
′
i) = KST(1, vi), and subsequently the

same critical itineraries as (stvi
, st1). In consequence:

=Q(γ1)(v
′
i, w

′
i) = =ST (γ1)(vi, wi)

=Q(γ2)(v
′
i, w

′
i) = =ST (γ2)(vi, 1) = (Γ2, R1, L2, L1)

So clearly (v′i, w
′
i) must be in the left bone BQ

L = BQ in PQ corresponding
to BST

L = BST in PST . We also get that the itinerary of γ2 under (qv′

i
, qw′

i
) is

(Γ2, R1, L2, L1). If (v, w) ∈ [0, 1]2 such that vw > 1
16 , then zero is a repeller

for the composition qw ◦ qv. This will be the case if we are situated on a
left quadratic bone. So the only way for the itinerary of a point to stay
indefinitely on L1 and L2 is for the point to map to zero after a number
of iterates. To be consistent with the required itinerary, we need to have
(qv′

i
◦ qw′

i
)(γ2) = 0 and qw′

i
(γ2) is R, so qw′

i
(γ2) = 1, hence w′

i = 1, for both
i = 1a d i = 2.

In conclusion: for the two points (v1, 1), (v2, 1) ∈ δBST we found two
points (v′1, 1), (v′2, 1) ∈ δBQ with the same corresponding kneading-data.
The two points (v′1, 1) and (v′2, 1) we found in δBQ are the only two boundary
points of BQ. This follows almost immediately from Thurston’s uniqueness.
2

2.10 A more complete description of

bones in P ST and PQ

We plan to prove next: following the crossings along BQ = BQ(σ1, τ1) ⊂
PQ, the combinatorics is same as at the crossings along the corresponding
bone BST = BST (σ1, τ1) ⊂ PST .

We show first a combinatorial result concerning the order of occurrence
of the primary and secondary intersections along a bone in P ST with fixed
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order-data (σ1, τ1). To fix our ideas, all proofs and results are developed
for left bones BST = BST

L , hence we will omit writing the index L unless it
causes ambiguity.

Fix a stunted left bone BST = BST (σ1, τ1) and slide (v, w) along BST .
Clearly, =ST (γ1) only changes at the primary intersection (v0, w0). There-
fore, BST

∗ = BST \{(v0, w0)} can be divided into two halves, each corre-
sponding to a different itinerary of γ1 under (stv, stw); call BST

− the left
half, containing the boundary point (v1, 1) ∈ δBST and BST

+ the one con-
taining (v2, 1) ∈ δBST (where v1 < v2):

BST = BST
∗ ∪ {(v0, w0)} = BST

− ∪ {(v0, w0)} ∪ BST
+

To fix our ideas, we look at BST
− ; the results and their proofs should

work symmetrically for BST
+ . BST

− is composed of a vertical segment and a
horizontal one:

BST
− = {v1} × [w0, 1] ∪ [v1, v0] × {w0} = BST

−,v ∪ BST
−,h

BST
−,h

BST
−,v

Figure 8: We divide the left half BST
− of a left bone in PST into a vertical

segment BST
−,v and a horizontal segment BST

−,h. All secondary intersections

occur along BST
−,v. All points along the horizontal part are capture points.

We can now state our claim for this section in more precise terms:

Theorem 2.19. The secondary intersections occur along BST
−,v in the strictly

decreasing order of their itinerary =ST (γ2), as w decreases from 1 to w0.

Proof. For a fixed m ≥ 1, call Dm
ST the set of all parameters (v, w)

(secondary intersections and capture points) on BST
−,v for which γ2 maps to

either γ1 in 2m − 1 iterates or to γ2 in 2m iterates. Call DST =
⋃

m≥1 D
m
ST

the distinguished points on BST
−,v. Also call =m

ST (γ2) the itinerary =ST (γ2)
truncated to the first 2m positions.
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As w decreases from 1 to w0, =
m
ST (γ2) decreases (in the order inherited

from the total order on infinite itineraries), with actual changes at all points
in

⋃

k≤m Dk
ST . Hence =ST (γ2) decreases, with changes at all points in DST .

Subsequently, =ST (γ2) decreases strictly on the set of distinguished points,
in particular on the set of secondary intersections (see [R] for details). 2

Remark. The theorem makes it possible to identify the order of occurrence
of the distinguished points (in particular of the secondary intersections)
along BST

−,v by looking at the itinerary of γ2. From the construction of the
stunted bones it is also easy to see that there are no secondary intersections
on the horizontal segment of BST

−,h. In fact, all points of BST
−,h are capture

points and =ST (γ2)(v, w0) is constant for v ∈ [v1, v0].
We move our focus now to the parameter space P Q. The corresponding

left bone BQ is a connected arc joining two boundary points (v′
1, 1) and

(v′2, 1) (with v′1 < v′2) and having a unique primary intersection (v′0, w
′
0).

As before, the itinerary of γ1 under (qv′ , qw′) changes only at (v′0, w
′
0) as we

move (v′, w′) along BQ. Hence we can divide BQ into two halves: left of
(v′0, w

′
0), containing (v′1, 1) and right of (v′0, w

′
0), containing (v′2, 4).

BQ = BQ
− ∪ {(v′0, w

′
0)} ∪ BQ

+

I will study the left half, comparatively with the vertical left half BST
−,v.

We know that there is a bijective correspondence between secondary
intersections along BST

−,v and BQ
− that associates to each intersection in BST

−,v

one with =Q(γ2) = =ST (γ2) in BQ
− .We would like to prove that these

secondary intersections occur on both BST
−,v and BQ

− in the same decreasing
order of =(γ2), going from the boundary towards the primary intersection.
In other words, we prove that the bijection is order preserving.

Fix m ≥ 1. Call (l1,m1) the first distinguished point in
⋃

k≤m Dk
Q on BQ

−
(from (v′1, 1) along the connected curve, with the regular order inherited by
the order on (0, 1) ⊂ R).

From theorem 2.15 we know that there is a corresponding distinguished
point (α, β) ∈

⋃

k≤m Dk
ST ⊂ BST

−,v with the same critical itineraries :

1. =ST (γ1)(α, β) = =Q(γ1)(l1,m1) and

2. =ST (γ2)(α, β) = =Q(γ2)(l1,m1)

Claim. (α, β) is the first point to occur in
⋃

k≤m Dk
ST along BST

−,v.

Suppose not. Then there exists a point (v∗, w∗) ∈
⋃

k≤m Dk
ST between

the boundary point (v1, 1) and (α, β). We then have:

=m
ST (γ2)(v1, 1) > =m

ST (γ2)(v
∗, w∗) > =m

ST (γ2)(α, β)
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=m
ST (γ2)(v1, 1) = =m

Q (γ2)(v
′
1, 1)

=m
Q (γ2)(l1,m1) = =m

ST (γ2)(α, β)

The contradiction follows easily. (Note, for instance, that the conditions
imply that the pair of critical itineraries at (v1, 1) has to be the same as the
pair at a point right before (α, β)).

So the distinguished point in (α, β) ∈ BST
− with itinerary =ST (γ2)(α, β) =

=Q(γ2)(l1,m1) is the first to occur in
⋃

k≤m Dk
ST . Continuing the procedure

shows that the order of occurrence of all points in
⋃

k≤m Dk
ST along BST

−,v is

the same as the order of points in
⋃

k≤m Dk
Q along BQ

− (i.e. the decreasing
order of the itinerary =m(γ2)). We can state this as follows.

Theorem 2.20. For a fixed m ≥ 1, going along BST
−,v from (v0, w0) to

(v1, 1) and along BQ
− from (v′0, w

′
0) to (v′1, 1), the itinerary =m(γ2) is mono-

tonely increasing, with actual changes occurring at each distinguished point
in

⋃

k≤m Dk
ST and

⋃

k≤m Dk
Q, respectectively. Hence the infinite itinerary

=(γ2) is monotonely increasing along BST
−,v.

Theorem 2.21. For a fixed m ≥ 1, going along [0, 1] × {1} ⊂ ∂P ST and
[0, 1]×{1} ⊂ ∂PQ, the itinerary =(γ2) = (Γ2, R1, L2, L1) stays constant, but
the itinerary =m(γ1) increases monotonically, with an actual change at each
end-point of a bone of period 2k ≤ 2m.

2.11 The big picture

Overview of results:
Fix m ≥ 1. Going along BST

− from (v0, w0) to (v1, 1) and along BQ
− from

(v′0, w
′
0) to (v′1, 1), the truncated itinerary =m(γ2) increases monotonically,

with an actual increase at each crossing with a right bone. There is a one-
to-one correspondence between the crossing points of bones of period at most
2m in the two families, correspondence that preserves the order of critical
itineraries (i.e. of the joint order-data).

Slide from left to right along the upper boundary of the two parameter
spaces ([0, 1] × {1} ⊂ ∂P ST and [0, 1] × {1} ⊂ ∂P Q). The itinerary =(γ2)
does not change, and the truncated itinerary =m(γ1) increases monotonely,
with an actual change at each end-point of a left bone. There is a one-to-
one correspondence between all boundary points of bones of period smaller
than 2m in the two families, correspondence that preserves the order of the
critical itineraries.

We want to restate the results in terms of kneading-data. In essence, we
are looking to obtain in P Q a similar property to the following in P ST (see
[R]):
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We will use the following lemma:

Lemma 2.22. (a) Consider two arbitrary (v′1, w
′
1), (v

′
2, w

′
2) ∈ BQ

− and the
itineraries =i

Q(γ2) of γ2 under qw′

i
◦ qv′

i
, for i = 1, 2. If =1

Q(γ2) < =2
Q(γ2)

then the kneading data K(qw1 ◦ qv1) << K(qw2 ◦ qv2).
(b) If (v′1, 1), (v′2, 1) ∈ [0, 1] × {1} are such that =1

Q(γ1) < =2
Q(γ1), then

K(q1 ◦ qv1) << K(q1 ◦ qv2).

We restate two important conclusions in P Q.

Theorem 2.23. In the parameter space P Q, the kneading-data of the maps
qw′ ◦qv′ increases along a left bone-arc from its primary intersection towards
either boundary point and increases along the upper boundary interval [0, 1]×
{1} ∈ ∂PQ from left to right (see picture). A symmetric statement holds for
right bones and the right boundary interval.

We know (see for example [MT]) that the order of the kneading-data of
two maps is preserved into the order of their topological entropies. Hence:

Theorem 2.24. The topological entropy increases in P Q along each bone-
arc from its primary intersection towards the boundary ∂P Q and along the
boundary segments [0, 1]×{1} and {1}× [0, 1] towards the upper right corner
(see picture).

Figure 9: The arrows show the direction of increasing entropy along the
bones and the boundary in P ST and PQ.

We want to point out a few major consequences of our results, crucially
important for later goals.

We showed that every bone in P Q is composed of a bone-arc (that we
called BQ in a previous section) and possible loop components. We will
eventually rule out the existence of bone-loops. For the time being, a step
towards this conclusion follows as a consequence of Thurston’s uniqueness:
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for any arbitrary left bone in PQ, the bone-arc BQ contains all possible post-
critically finite kneading data (itineraries) admissible for the given bone. In
consequence, any loop component that the bone may have can not contain
any post-critically finite points.

Definition 2.25. Fix n ∈ N. We define the n-skeleton in either parameter
space to be :

SST
n = the union of all (left and right) bones BST

2k ⊂ PST of period
2k ≤ 2n, together with the boundary ∂P ST ;

SQ
n = the union of all (left and right) bones BQ

2k ⊂ PQ of period 2k ≤ 2n,
together with the boundary ∂PQ.

By a vertex of either skeleton we mean either an end-point of its bones
or a (primary or secondary) intersection point.

Theorem 2.26. For any fixed n ∈ N, there is a homeomorphism:

ηn : PST −→ PQ

which maps SST
n onto SQ

n , carrying ∂PST to ∂PQ, carrying bones to corre-
sponding bones and and vertexes to vertexes with the same data.

Proof. We use the result that will be proved independently in the next two
chapters: the bones in P Q are smooth C1 curves, intersecting transversally
with each other and with the boundary. There are no bone loops in P Q,
so each bone is a smooth arc connecting two boundary points. Moreover,
each such bone-arc contains all post-critically finite kneading-data existing
on the corresponding bone in P ST , in the same order of occurrence.

The construction of the homeomorphism is topologically straightforward.
Define ηn on the set of vertexes by corresponding to each vertex in SST

n the
unique one in SQ

n with the same data. Along each bone, ηn preserves the
order of the vertexes. Hence we can extend it continuously to the intervals
on the bones or boundary between each two vertexes, then to each skeleton-
enclosed region. This can easily be done in such a way that the resulting
continuous map ηn : PST −→ PQ is a homeomorphism. 2

We can associate to the n-skeleton in either parameter space a topological
cell-structure as follows:

• the 0-cells are points, more precisely the vertexes of the n-skeleton;
• the 1-cells are the connected components of the bones obtained by

deleting the vertexes, hence they are homeo to open intervals;
• the 2-cells are the connected components of the complement of the

n-skeleton in the respective parameter space, hence they are homeo to open
discs.

We will also use the closures of such cells, which are homeo to points,
closed intervals and closed discs respectively.
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η3

ψ3 = η−1
3

Figure 10: The n-skeletons define topological cell-complexes in both param-
eter spaces. The map ηn is a homeomorphism between these complexes. The
picture illustrates n = 3.

We call the resulting complexes: P ST
n in PST and PQ

n in PQ. The map
ηn : PST

n −→ PQ
n is a homeomorphism of cell complexes, taking each cell

in PST
n to a corresponding cell in P Q

n by carrying vertexes to vertexes with
the same entropy and edges to edges with the same interval of entropies.

3 Hyperbolicity in PQ

3.1 The mapping schema of a hyperbolic map

Definition 3.1. Let M be a finite disjoint union of copies of C and let
f : M −→ M be a proper holomorphic map of degree ≥ 2 on each component
of M . We say that f is hyperbolic if every critical orbit converges to an
attracting cycle.

Let f be a hyperbolic map as above. Let W (f) be the union of the
basins of attraction of all attracting cycles of f . f carries each component
Wα ⊂ W (f) onto a component Wβ by a map of degree dα ≥ 1. Also let
W c(f) be the union of all critical components Wα ⊂ W (f), that is of all Wα

that contain critical points of f .
We define the reduced mapping schema S(f) = (| S |, F, w) associated

to f as the triplet made of:
• a set of vertexes | S |, obtained by associating a vertex α to each

critical component Wα ⊂ W c(f);
• a weight function w :| S |−→| S |, defined as w(α) = the number of

critical points of f in Wα;
• a set of edges F :| S |−→| S | , F (α) = β, where Wβ is the image of

Wα under the first return map to W c(f).
The critical weight of S(f) is defined as w(f) =

∑

α w(α)
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All hyperbolic maps that interest us have reduced mapping schemata of
critical weight 2, so we will only look at the cases that appear for w = 2.
For a more general analysis, see [M1].

To a fixed mapping schema with w = 2, we associate the universal poly-
nomial model space P. This will be the space of all maps f from C1 t C2

to itself such that the restriction of f to each copy of C is a monic centered
polynomial of degree 2. More precisely:

f(z) = z2 − a1, for all z ∈ C1

f(z) = z2 − a2, for all z ∈ C2

where a1, a2 ∈ C.

We say that a map f ∈ P belongs to the connectedness locus C if its
filled Julia set K(f) intersects both C1 and C2 in a connected set. The
hyperbolic connectedness locus H ⊂ C is the open set of all f ∈ P for which
the orbits of both critical points 0 ∈ C1 and 0 ∈ C2 converge to attracting
periodic orbits.

Such hyperbolic maps can be roughly classified into the three following
types (see [M3]):

(1) Bitransitive case: 0 ∈ C1 and 0 ∈ C2 belong to U1 ⊂ C1 and
U2 ⊂ C2 such that: U1 is mapped to U2 under q1 iterates of f and U2 is
mapped to U1 under q2 iterates.

U1 3 0

f◦q1

f◦q2

U2 3 0

Figure 11: The behavior of a bitransitive hyperbolic map.

(2) Capture case: 0 ∈ U1 ⊂ C1 and 0 ∈ U2 ⊂ C2 such that U1 is
periodic and U2 is not, but some forward image of U2 coincides with U1.
Also its symmetric case.

(3) Disjoint periodic sinks: 0 ∈ U1 and 0 ∈ U2, where U1 and U2 are
periodic of periods q1 and q2, but no forward image of U1 coincides with U2

and vice-versa.

For maps f ∈ H, we may consider their reduced mapping schemata S(f).
These schemata will all have critical weight 2, but not all are isomorphic
(see figure 14). However, all maps in each connected component of H clearly
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U1 3 0 f◦q1

U2 3 0

f◦qf◦q2

f◦q1(U1) = f◦q(U2)

Figure 12: The behavior of a map in the capture case.

U1 3 0

f◦q2

U2 3 0

f◦q1

Figure 13: The behavior of a map in the disjoint sinks case.

have isomorphic schemata. Furthermore, by theorem 4.1 in [M1]:

Theorem 3.2. If Hα ⊂ C is a hyperbolic component of H with maps having
reduced schemata isomorphic to S, then Hα is diffeomorphic to a model
space B(S). In particular, any two hyperbolic components Hα and Hβ with
schemata isomorphic to S are diffeomorphic. Moreover, each Hα contains
a unique post-critically finite map fα, called its center.

(3)(2) (1) 

α2

α1

α1
α2α2α1

Figure 14: (1) Bitransitive case: | S |= {α1, α2}, F (α1) = α2, F (α2) =
α1, ω(α1) = ω(α2) = 1. (2) Capture case: | S |= {α1, α2}, F (α1) =
α1, F (α2) = α1, ω(α1) = ω(α2) = 1. (3) Disjoint sinks case: | S |=
{α1, α2}, F (α1) = α1, F (α2) = α2, ω(α1) = ω(α2) = 1

Definition 3.3. A real form of the mapping schema S is an antiholomor-
phic involution ρ : C1 t C2 −→ C1 t C2 which commutes with the special
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map fS
0 : C1 t C2 −→ C1 t C2, fS

0 (z) = z2. The collection of maps f ∈ P
that commute with ρ is an affine space PR(ρ), which we call the real form
of P associated with ρ. We also define the corresponding real connectedness
locus and the real hyperbolic locus as:

CR(ρ) = C ∩ PR(ρ)
HR(ρ) = H∩ PR(ρ)

For each mapping schema of weight 2, there are exactly two real forms.
The form ρ0(z) = z corresponds to the space PR(ρ0) of real polynomials in
P. If we restate theorem 6.4 of [M1] in our particular case, we obtain:

Theorem 3.4. Any hyperbolic component in CR = CR(ρ0) ⊂ PR(ρ0) is a
topological 2-cell with a unique “center point” and is real analytically home-
omorphic to a space of Blaschke products βR(S, ρ0).

In other words, all hyperbolic components with the same schemata in CR

are diffeomorphic to each other. For example, all bitransitive components
are diffeo to the principal component centered at:

fS
0 : C1 t C2 −→ C1 t C2, fS

0 (z) = z2

For a detailed characterization of the construction and properties of the
suitable Blaschke-products model spaces, see [M1].

3.2 Hyperbolic components in PQ

Let us return to our space, containing real quartic polynomials that are
compositions qw ◦ qv of logistic maps.

Let C1 and C2 be two copies of the complex plane and consider qv :
C1 −→ C2 and qw : C2 −→ C1 the complex extensions of two fixed logistic
maps of the interval. We define a new map: qv

w : C1tC2 −→ C1tC2, acting
as qv on C1 and as qw on C2.

Let W (qv
w) ⊂ C1tC2 be the open set consisting of all complex numbers in

C1 and C2 whose forward orbit under qv
w converges to an attracting periodic

orbit of qv
w.

Under iteration of qv
w, each component of W (qv

w) is mapped onto a com-
ponent of W (qv

w). As before, we will say that qv
w is hyperbolic if both

γ1 ∈ I1 ⊂ C1 and γ2 ∈ I2 ⊂ C2 are contained in W (qv
w).

It would be convenient to find a correspondence between our family of
pairs of real quadratic maps, parametrized by (v, w) ∈ P Q and the family
of degree 2 normal polynomials. It can be shown that each map qw ◦ qv :
C1 −→ C2 is conjugated by a complex affine map L to a composition of
maps z −→ z2 − a1 and z −→ z2 − a2. Moreover, the correspondence
(v, w) → (a1, a2) is “nice” enough to permit us to carry over to P Q properties
we have in the space of normal forms. More precisely:

26



Theorem 3.5. Let U be the subset of PQ consisting of pairs (v, w) with
vw > 1

16 . For each such pair (v, w) ∈ U there is a unique pair (A,B) ∈ R
2

such that qw ◦ qv is linearly conjugate to z −→ z4 + Az2 + B; there also
exists a unique pair (a1, a2) ∈ R

2 so that qw ◦ qv is linearly conjugate to the
composition of z −→ z2 − a1 and z −→ z2 − a2.

Furthermore, recall that the connectedness locus CR ⊂ R
2 is the subset of

parametes (a1, a2) ∈ R
2 for which the complex critical points of (z2−a1)

2−a2

have bounded orbits. The correspondence described above:

Ξ : U −→ CR

Ξ(λ, µ) = (a1, a2)

is a bijective diffeomorphism.

Proof. Each qw ◦ qv with (v, w) ∈ PQ is conjugated by an affine map
L(z) = − 8

3√
v2w

z + 1
2 to a composition of the two monic centered quadratic

complex maps: z −→ ζ = z2 − a1(λ, µ) and ζ −→ z = w2 − a2(λ, µ). The
correspondence:

Φ : U −→ R
2, Φ(v, w) = (A,B)

is a diffeomorphism onto its image, where the image Ξ(U) is exactly the real
connectedness locus CR in PR. 2

Remarks. (1) The region P Q \U = {(v, w) / vw < 1
16} is itself a hy-

perbolic component of P Q, whose maps have all critical points attracted to
zero. The map Ξ folds this region and the principal component centered at
(v, w) = (2 , 1

2) ∈ PQ onto the same component in CR.
(2) All bones in PQ are contained in U . Indeed, suppose there is a (v, w)

on a bone such that (v, w) /∈ U . The fixed origin is not repelling for the map
qw ◦ qv with negative Schwarzian derivative, so it attracts all critical points,
hence (v, w) can’t be on a bone, contradiction.

We use the results in the previous sections to give the needed description
of the hyperbolic components in our original parameter space P Q. Hyper-
bolic components within each class (bitransitive, capture and disjoint sinks)
are diffeomorphic to each other. The center points in each case will be
respectively a primary intersection, a capture point or a secondary intersec-
tion.

Theorem 3.6. Each hyperbolic component in U ∈ P Q is a topological 2-
cell which contains a unique post-critically finite point, called its center.
Moreover, every bone that intersects such a component does it along a simple
arc passing through the center. Subsequently, there could be either one bone
crossing the component through its center (capture case) or a pair of left-
right bones intersecting transversally at the center point (bitransitive and
disjoint sinks cases).
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A. B.

Figure 15: A. Hyperbolic components in R
2 for the classical family of pairs

quadratic monic centered maps. The picture shows the parameter window
(a1, a2) ∈ [−2, 2] × [−2, 2]. B. Hyperbolic components in U ∈ P Q. The
principal component in both cases is visible as the large central shaded region.

3.3 Density of hyperbolicity in PQ

We aim to prove the following main result:

Theorem 3.7. Hyperbolicity is dense in the parameter space P Q.

Remark. The theorem is a modification of the more general Fatou con-
jecture (see [KSvS]). The reference gives a proof that makes use of the
following Rigidity Theorem, that we will also be used to prove theorem 3.7.

Rigidity Theorem. Let f and f ′ be two polynomials with real coefficients,
real non-degenerate critical points, connected Julia set and no neutral pe-
riodic points. If f and f ′ are topologically conjugate as dynamical systems
on the real line R, then they are quasiconformally conjugate as dynamical
systems on the complex plane C.

Proof. We define the family S4 as the set of complex polynomials
Q : C → C of degree 4, “boundary anchored” (i.e. Q(0) = Q(1) = 0) and
such that Q(z) = Q(1 − z), for all z ∈ C.

Consider Xs to be the subset of maps in S4 with the following properties:
• They have real coefficients.
• Their three critical points are real and nondegenerate.
• all critical points and values are in [0,1]. Hence their Julia sets are

connected (see for example theorem 17.3 in [M4]).
• The boundary {0, 1} is repelling.

28



w = 1
2

v = 1
2

vw = 1
16

Figure 16: All maps in {vw < 1
2} and in {v < 1

2 , w < 1
2} are hyperbolic.

Hyperbolic maps are dense in {vw > 1
16 , v ≥ 1

2} (slant shaded). By symme-
try, they are dense in {vw > 1

16 , w ≥ 1
2} (horizontaly shaded). The region

vw > 1
16 contains all left and right bones.

In other words:

Xs = {qw ◦ qv, where (v, w) ∈ PQ, v ≥
1

2
, vw >

1

16
}

Indeed, recall that the three complex critical points of an arbitrary P ∈ P Q

are C1, C2 = 1
2 and C3 = −C1. An equivalent condition to C1 ∈ R is that:

qv(
1

2
) ≥

1

2
⇔ v ≥

1

2

We claim that hyperbolic polynomials are dense in Xs. Then the proof
of 3.7 follows relatively easily. Indeed, the claim implies directly density
of hyperbolicity in the region in P Q where vw > 1

16 and v ≥ 1
2 . By the

symmetry property (2), the result follows in the region where vw > 1
16 and

w ≥ 1
2 . In the regions {vw > 1

16 , v < 1
2 , w < 1

2} and {vw < 1
2} the proof is

trivial: if vw < 1
16 then all three critical orbits of qw ◦ qv converge to zero,

while if v < 1
2 , w < 1

2 and vw > 1
16 then all critical orbits converge to a

point in (0, 1
2). 2

Next, we aim to prove density of hyperbolicity in Xs.

Lemma 3.8. Consider P ∈ Xs with one parabolic cycle {z1, ..., zm}. We
can approximate P by a polynomial S ∈ Xs for which the cycle is attracting.
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Sketch of proof: Fix P ∈ Xs as above.
It is fairly easy to show the existence of a polynomial Q : C −→ C with

real coefficients and the following properties (see [R]):
• Q(z) = Q(1 − z), ∀ z ∈ C

• Q(zj) = 0, ∀ j = 1,m
• Q(0) = Q(1) = 0
• Q′(x) = 0 when P ′(x) = 0

•
∑ Q′(zj)

P ′(zj)
< 0

Consider the new polynomial R = P + εQ. For small real values of ε, R
perturbes the neutral cycle of P to an attracting cycle:

∑

log | R′(zj) | =
∑

log | P ′(zj) | +
∑

log | 1 + ε
Q′(zj)

P ′(zj)
| =

= ε
∑ Q′(zj)

P ′(zj)
+ o(ε2) < 0

For small enough values of ε, R has the following properties:
• the parabolic cycle of P is attracting for R;
• the attracting/repelling cycles of P change to attracting/repelling cy-

cles for R (hence {0} remains a repelling fixed boundary point for R);
• R(z) = R(1 − z), ∀ z ∈ C and R(0) = R(1) = 0, hence R ∈ S4;
• R has real coefficients;
• the critical points of R are the same as the critical points of P , hence

they are real, nondegenerate; all critical points and values are contained in
[0, 1], hence the Julia set J(R) is connected;

However, in order to satisfy all required conditions, Q (hence R) may
have degree larger than 4. We use the Straightening Theorem to obtain a
degree 4 polynomial S ∈ Xs with the same behavior as R (see for example
[CG]or [R]). 2

For every Q ∈ S4, let τ(Q) be the number of critical points contained in
the attracting basin of a hyperbolic attracting cycle of Q. Define:

X ′
s = {Q ∈ Xs / τ(Q) has a local maximum at Q}

As τ is uniformly bounded above, X ′
s is dense in Xs. Moreover, τ is

locally constant at any P ∈ X ′
s, hence we have the following:

Proposition 3.9. X ′
s is open and dense in Xs.

Proposition 3.10. No map in X ′
s has a neutral cycle.
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Proof. Consider P ∈ X ′
s and Q given by the lemma. By making the

perturbation small enough, we can arrange that the other hyperbolic at-
tractors of P do not disappear. Moreover, we can also make sure that the
critical points that were attracted to the attracting cycles remain so under
the perturbation.

On the other hand, each attracting cycle attracts at least one critical
point. Hence introducing a new attractor by perturbing P to Q will change
τ as :

τ(Q) ≥ τ(P ) + 1

contradiction with the local maximality of τ at P . 2

We finish by giving a reduced statement, from which theorem 3.7 follows
now immediately. The proof is detailed in section 3.4.

Theorem 3.11. Hyperbolic polynomials are dense in X ′
s.

3.4 A reduced density result

Recall that two points z1 and z2 are in the same foliated equivalence class
of a map f if their grand orbits under f have the same closure. For a fixed
f , we denote by nac the number of foliated equivalence classes of acyclic
critical points in the Fatou set of f . By [MS], the complex dimension of
the Teichmuller space of a map f : C → C is given by:

dim(Teich(f)) = nac + nhr + nlf + np, where:

nac = # of foliated equivalence classes of acyclic critical points in the
Fatou set F (f);

nhr = # of Herman rings of f ;

nlf = # invariant line fields;

np = # parabolic cycles.

If P ∈ X ′
s, P has no Herman rings and no Siegel discs. By [KSvS] and

[S], P does not support an invariant line field in its Julia set. We also proved
in lemma 3.8 that P does not have any parabolic basins. So all connected
components of its Fatou set are attracting basins. Hence:

nhr = nlf = np = 0 ⇒ dim(Teich(P )) = nac

Hence the set:
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QC(P ) = {Q ∈ S4 / Q quasiconformally conjugate toP}

is covered by countably many complex submanifolds of dimension nac. Sub-
sequently, the set:

QCR(P ) = QC(P ) ∩ Xs

is covered by countably many embedded real analytic submanifolds of Xs

with real dimension nac.
We will also use the following( [dMvS], pp 93):

Definition 3.12. If the 3-modal maps P,Q : [0, 1] → [0, 1] are such that
hQ

P :
⋃

n,iP
n(ci(P )) →

⋃

n,iQ
n(ci(Q)) i = 1, 2, 3

defined by :
hQ

P (Pn(ci(P ))) = Qn(ci(Q)), ∀i = 1, 2, 3, ∀n ∈ N

is an order-preserving bijection, then we say that P and Q are combinato-
rially equivalent as 3-modal maps of the interval.

The relationship between combinatorial equivalence and topological con-
jugacy in our space Xs can be described by the following theorem ( [dMvS]):

Theorem 3.13. Call F the family of maps f of the interval satisfying the
following:

(1) they are of class C3;
(2) they have nonflat critical points ( i.e. D2f(c) 6= 0, ∀c such that

Df(c) = 0 );
(3) they have negative Schwartzian derivative: Sf < 0;
(4) the boundary of the interval is repelling (in other words | Df(x) |> 1,

if x ∈ {0, 1});
(5) they have no one-sided periodic attractors.

Two maps f, g ∈ F are topologically conjugate (f
top
∼

R
g) if and only if

they are combinatorially equivalent (f
c.e.
∼

R
g).

Remark. If P and Q are maps in X ′
s restricted to the interval [0, 1], then

both the conditions of theorem 3.13 and the Rigidity Theorem are satisfied,
hence we have the following implications:

P
c.e.
∼

R
Q ⇔ P

top
∼

R
Q ⇒ P

qc.
∼

C
Q

Proof of theorem ... Fix P ∈ X ′
s.

We think of S4 ⊂ C
2 and we consider the three holomorphic functions

ci : U → C, i = 1, 2, 3 that give the three critical points of each map
Q ∈ U . By taking B ⊂ U ⊂ S4 to be a small ball around P , we can arrange
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to have c1(Q) < c2(Q) < c3(Q) = −c1(Q), for any Q ∈ B∩Xs. Take B small
enough for τ to be constant: τ = τ(Q), ∀Q ∈ B ∩ Xs (recall τ is locally
constant at each P ∈ X ′

s).

We want to prove (by contradiction) that B ∩ Xs contains hyperbolic
maps. Suppose the maps in U ∩ Xs are not hyperbolic, hence τ < 3. There
are two cases that remain for analysis:

(1) τ = 1 (only C2 is attracted) or τ = 2 (only C1 and C3 are attracted).
Either way, there is only one foliated equivalent class of critical points in the
Fatou set, hence nac ≤ 1 (note that the critical points are not necessarily
acyclic). Hence QCR(Q) is in this case at most a countable union of lines
in Xs, for any Q ∈ B ∩ Xs.

(2) τ = 0 (no critical points are attracted). Hence nac = 0, so QCR(Q)
is a countable union of points in Xs, for any Q ∈ B ∩ Xs.

A. Suppose first there are no bones crossing the neighbourhood B.

If there are no other “critical relations” in B (i.e. there are no m,n ∈ N

such that Qm(c1(Q)) = Qn(c2(Q)) for some Q ∈ B), then for any arbitrary
Q ∈ B the map hQ

P defined in 3.12 is order preserving.(Note that we do not
consider Q(c1(Q)) = Q(c3(Q)) a critical relation.) Indeed: Suppose that h
reverses the order of two elements:

P k(ci(P )) < P l(cj(P )) and
Qk(ci(Q)) > Ql(cj(Q))

By continuity, there exists a T ∈ B such that:
T k(ci(T )) = T l(cj(T )), contradiction.

Since hQ
P is order-preserving for any Q ∈ B ∩ Xs, it follows that P is

combinatorially equivalent to any Q ∈ B ∩ Xs, hence P is quasiconformally
conjugate to any Q ∈ B ∩ Xs. This contradicts the fact that QCR(P ) is at
most a union of countably many lines in Xs.

Clearly, the “no critical relations” condition applies in the case τ = 1 or
τ = 2.

If τ = 0, it could happen that all neibourhoods of τ , arbitrarily small,
contain critical relations. In other words, there exists a map R arbitrarily
close to P that has a critical relation, say Rm(c1(R)) = Rn(c2(R)).

Consider Σ = {Q ∈ B ∩ Xs /Qm(c1(Q)) = Qn(c2(Q))}. This is a 1-dim
curve in B ∩ Xs. There clearly are no other critical relations on Σ, hence
the map hQ

R is order-preserving for any Q ∈ Σ. Subsequently, all maps in
Σ are combinatorially equivalent to R, hence quasiconformally conjugate to
R. This contradicts the fact that QCR(R) is a collection of countably many
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points in Xs, as τ = 0.

B. If B ∩ Xs is crossed by a bone B, let R ∈ B ∩ B ∩ Xs.
Bones can’t accumulate at R, or R would be hyperbolic. So there exists

a neighbourhood V of R, V ⊂ B ∩ Xs that intersects no other bones than
B. Take S ∈ V\B and take W a neighbourhood of S in V\B. Then the
argument at A. applies for W and leads us to a contradiction. 2

The proof of theorem 3.7 is now finished.

4 Topological properties of the Q-bones

4.1 Smoothness of the Q-bones

As we have stated before, a bone in P Q is an algebraic variety with two
boundary points in ∂P Q. As far as we presently know, the bone curves may
not even be connected. We will rule this out in chapter 4.3, where we show
independently that a bone can’t contain any loops. For now, we dedicate
this paragraph to proving that:

Theorem 4.1. The bones are smooth C1 curves that intersect transversally.

Recall that we use the notations BQ
L,2n and BQ

R,2n for a left/right bone in

PQ of period 2n and given order-data. Fix an arbitrary point p0 = (v0, w0)
on a left bone BQ

L,2n. We want to show that BQ
L,2n is smooth at p0 = (v0, w0).

For the map h = qw0 ◦ qv0 , γ1 has a superattracting periodic orbit of pe-
riod 2n. Let Uh = Uh(γ1) be the immediate attracting basin of γ1. Hence,
if K(h) is the filled Julia set of h, then Uh ⊂ K(h) is a simply connected
bounded open neighbourhood of γ1 that is carried to itself by h◦n. We point
out the two cases that could appear, depending on the behavior of the other
two (complex) critical points of h, called C1 and C3.

Case 1. The map h is hyperbolic (i.e. C1 and C3 are attracted).

Proof. Each hyperbolic component in P Q is biholomorpfic to a Blaschke
model. Within each of these components, the locus of the maps with a
specific superattracting orbit is a smooth complex manifold. Each bones
intersection is a center point for some hyperbolic component, and it has
been proved that these intersections are transverse. 2

Case 2. The map h is not hyperbolic (i.e. C1 and C3 are not attracted to
attracting cycles).

Proof. We will use quasiconformal surgery in the neighbourhood of our
fixed map h ∈ PQ. No iterates of the other two critical points of h be-
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long to Uh, the immediate attracting basin of γ1, hence Uh is isomorphic to
the open unit disc, parametrized by its Bottcher coordinate. I.e., there ex-
ists a biholomorphic isomorphism that conjugates h◦n to the squaring map
z −→ z2:

β : Uh −→ D

β(h◦n(z)) = (β(z))2

We want to replace the superattracting basin Uh by a basin with small
positive multiplier Λ. For each Λ in a small disc centered at zero, we will
construct a new map hΛ corresponding to a (vΛ, wΛ) ∈ PQ in such a way
that Λ −→ hΛ ∼ (vΛ, wΛ) is analytic and that h0 = h.

The composition of smooth (analytic) maps

Λ −→ hΛ ∼ (vΛ, wΛ) ∈ PQ −→ m(hΛ)

is the identity. (Here m denotes again the function that assigns to each map
in PQ its multiplier at the specified attracting point). It follows that the
partial derivatives ∂m

∂v , ∂m
∂w can’t be simultaneously zero on a small neigh-

bourhood of h ∈ PQ. By the Implicit Function Theorem, the bone curve is
smooth C1 on a small neighbourhood of h. 2

4.2 Quasiconformal surgery construction

Consider the map f(z) = z2 on the open unit disk D (which is the
Bottcher parametrization of h◦n). Its unique critical point is the origin. Fix
a small ε > 0 (along the proof we will make specific requirements of how
small we want ε to be) and let Λ be an arbitrary complex number such that
0 ≤| Λ |≤ ε.

Using a partition of unity, we perturb the map f to a new degree 2 map
gΛ such that:

• gΛ has the same dynamics as fΛ(z) = z2+Λz inside a small disc around
zero; in particular, the origin will be fixed, with multiplier Λ;

• gΛ has the same dynamics as f(z) = z2 outside a larger disc around
zero.

Choose a radius r such that:

ε

2
≤ r ≤ min(

1

2
, 1 − ε)

This will insure that fΛ maps ∆r2 into itself and that the critical point of
fΛ is in ∆r2.
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Construct a C1 partition of unity ρ : C −→ R with
• ρ = 0 outside ∆ r

2
;

• ρ = 1 inside ∆r2;
• 0 ≤ ρ ≤ 1 on ∆r/2\∆r2

Define gΛ : C −→ C as:

gΛ(z) = z2 + Λρ(z)z

If we ask for r
2( r

2 + ε) ≤ r2, i.e.2ε
3 ≤ r and by making ε smaller, if

necessary, we can insure that gΛ has no critical point outside ∆r2 , for any
0 ≤| Λ |≤ ε. (Recall that the critical point of g0(z) = f(z) = z2 is 0 ∈ ∆r2

and the dependence Λ −→ gΛ is smooth for | Λ |≤ ε).
For short: For any fixed | Λ |≤ ε, the map gΛ : D → D constructed

above is a 2-to-1 C1 smooth map that carries ∆r\∆r2 into ∆r2 and carries
∆r2 into itself. gΛ coincides with fΛ inside ∆r2 and with f outside of ∆ r

2
(in

particular it is conformal outside ∆r) and has no critical points in ∆r\∆r2 .
We would like to emphasize that, as ∆r\∆r2 is mapped by gΛ directly into
∆r2, the annulus ∆r\∆r2 is intersected at most once by any orbit under gΛ.

We pull gΛ back to Uh through the Bottcher biholomorpic diffeomor-
phism β:

GΛ = β−1 ◦ gΛ ◦ β : Uh → Uh

The new map GΛ is 2-to-1 and C1 smooth, and has similar properties as
the ones stated above for gΛ (see figure):

gΛ = f

∆ r

2

∆r

∆r2
Wh

GΛ = h◦n

Vh

β

Xh

Figure 17: Xh, Vh and Wh are the preimages under the Bottcher map β
of ∆r, ∆ r

2
and ∆r2, respectively. The map gΛ : D → D pulls back as the

C1-map GΛ, that acts as h◦n outside Vh and carries Vh to Wh.

But h : C → C carries

Uh → h(Uh)
∼
−→ ...

∼
−→ h◦(n−1)(Uh)

∼
−→ h◦n(Uh) = Uh

(acting as a diffeo except on Uh). So we can define HΛ as:
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HΛ = h outside Vh and

HΛ = h
◦(1−n)

◦ GΛ inside Xh

The new HΛ is C1 (notice that the two definitions coincide on Xh\Vh)
and has the desired dynamical behavior. However, it may fail to be analytic,
hence it may not be a map in P Q. The rest of the construction aims to
transform HΛ into a polynomial hΛ ∈ PQ, preserving the dynamics.

The Beltrami dilatation of HΛ is:

µHΛ
(z) =

(HΛ)z

(HΛ)z

Recall that gΛ has no critical point in ∆r\∆r2 , so (gΛ)z 6= 0 on ∆r\∆r2 .
Hence the denominator of:

µgΛ(z) =
(gΛ)z

(gΛ)z

never vanishes. Moreover, for fixed z, both top and bottom above are linear
in Λ, so it follows easily that:

Λ → µgΛ

is an analytic dependence. Hence µHΛ
(z) depends itself analytically on Λ

and :

• µHΛ
(z) = µGΛ

(z) = µgΛ(β(z))β′(z)
β(z) on Xh

• µHΛ
(z) = 0 outside Vh

Under iteration of gΛ, points hit the annulus ∆r\∆r2 at most once, hence
µgΛ is bounded less than 1 in modulus.

| µHΛ
(z) |=| µgΛ(β(z)) || β′(z)

β′(z) |=| µgΛ(β(z)) |≤ 1 on Xh\Wh and

µHΛ
(z) = 0 outside Xh\Wh.

We define an ellipse field starting with circles inside Wh and outside all
preimages of Xh under HΛ and pulling it back invariantly under HΛ. All
orbits hit Xh\Wh (the annular region where HΛ is not analytic) at most
once, so the ellipse field is distorted at most once along any orbit. Let µΛ

be the coefficient of this field. The dependence of µΛ on Λ is holomorphic
on | Λ |≤ ε.

Let φΛ solve the Beltrami equation:

φz

φz
= µΛ
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determined uniquely by the normalization φΛ(0) = 0, φΛ(1) = 1, φΛ(∞) =
∞,

With this choice for φΛ, hΛ = φΛ ◦ HΛ ◦ φ−1
Λ is a quartic complex poly-

nomial. Moreover, for Λ ∈ R, | Λ |< ε, hΛ corresponds to a pair in the Q
-family (see [R]).

4.3 The impossibility of bone-loops

Our plan for this section is to prove that bones in the parameter space
PQ can not contain any loops (i.e. simple closed curves). Recall that we
proved in section 2 that each bone contains a simple bone-arc connecting
two boundary points, and that all possible distinguished kneading data of
the bone can be found in a certain order along this bone-arc.

We argue by contradiction. Suppose there exists a bone loop L. We will
show next that the interior U of the loop can’t contain any hyperbolic maps.
This will contradict the genericity of hyperbolicity stated in theorem 3.7.

Remark. The following statements and proofs are given for left bones, but
apply by symmetry to right bones.

Lemma 4.2. A left bone loop in PQ can’t contain any distinguished point,
hence it can’t contain any crossing with a right bone.

Proof. Any distinguished point on the loop L would need to have a
kneading-data already achieved along the bone arc. Thurston’s Theorem
shows easily that this is impossible. 2

Theorem 4.3. The region enclosed by a left bone loop in P Q can’t contain
any hyperbolic maps.

Proof. We know by theorem 3.6 that each hyperbolic component in P Q is
an open topological 2-cell that contains a unique post-critically finite point,
called “center”. Moreover, the intersection of any bone with a hyperbolic
component must be a simple arc passing through the center.

Suppose, by contradiction, that some hyperbolic component H intersects
the region U . We have two cases:

(1) H ⊂ U . then there is a bone that passes through the center of H.
This can only be a bone arc, as bone loops can’t contain distinguished points
(by lemma 4.2). From the Jordan Curve Theorem, this bone arc has to in-
tersect the bone loop L, contradiction with lemma 4.2.

(2) H intersects the loop L. Then the loop must contain the center point
of H, again contradiction. 2

38



5 Topological conclusions

5.1 The entropy and the bones

Recall that our final claim is: for each fixed h0 ∈ [0, log 4], the level-set
i(h0) = {h = h0} of the entropy function in either parameter space, called
h0-isentrope, is connected.

In the ST -family, the analysis of the properties of entropy level-sets is
an easy exercise. One can obtain the following fairly straight-foreward (see
[MT] and [R]):

Theorem 5.1. In PST , the entropy is a monotone function of either coordi-
nate. For each h0 ∈ [0, log 4], the corresponding h0-isentrope is contractible,
as it is a deformation retract of the contractible region {h ≤ h0}.

To obtain similar results in the quartic family, we will need some nota-
tions and results from the general theory of m-modal maps of the interval.

If f : I → I is an m-modal map with folding points c1 ≤ c2 ≤ ... ≤
cm, we define the sign of the fixed point x of f ◦k with itinerary =(x) =
(A0, A1, ..., Ak−1) as the number:

sign(x) = ε(A0)ε(A1)...ε(Ak−1)

where ε(Aj) = +1, −1 or 0 according to Aj being an increasing/decreasing
lap of f or a folding point c1, ..., cm. If sign(x) = −1 we say that x is a fixed
point of negative type of f ◦k.

We define Neg(f◦k) as the number of fixed points of negative type of
f◦k.

Theorem 5.2. ( [MT], page 22) If f is an interval m-modal map, then its
topological entropy is:

h(f) = lim
k→∞

1

k
log+(Neg(f◦k))

where log+ s = max(log(s), 0).

Remark: Neg(f◦k) is an integer ≥ 1 unless f ◦k has no fixed points of neg-
ative type; in that case, log+(Neg(f◦k)) = 0.

The following result is a simple consequence of theorem 5.2 (see [R] for
proof and details).

Lemma 5.3. If for two m-modal interval maps f and g the topological
entropies h(f) 6= h(g), then the sequence | Neg(f ◦k) − Neg(g◦k) | must be
unbounded as k → ∞.
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Notation. For p = (v, w) ∈ P Q, call Qp = qw ◦qv and for p = (v, w) ∈ P ST ,
call STp = stw ◦ stv.

Lemma 5.4. Consider p1 = (v1, w1) and p2 = (v2, w2) in PQ such that

h(Qp1) 6= h(Qp2)

Then any path in PQ from p1 to p2 crosses infinitely many bones.

Proof.

Consider an arbitrary path in P Q from p1 to p2:

p : [0, 1] → PQ , p(t) = (v(t), w(t))
p(0) = p1 = (v1, w1) , p(1) = p2 = (v2, w2)

For a fixed k ∈ N, as t goes from 0 to 1, Neg(Q◦k
p(t)) changes whenever a

fixed point of Q◦k
p(t) ( i.e. a periodic point of Qp(t) of period dividing k ) of

negative type appears or disappears. An existing negative-type fixed point
of Q◦k

p(t) can be lost under continuous deformations of the map by becoming
a positive-type fixed point. Conversely, a such fixed point can appear by a
reverse process. Both changes imply the existence of an intermediate state,
corresponding to some t∗ ∈ [0, 1], in which the respective fixed point is a
critical point of Q◦k

p(t∗).
In other words, a critical point of Qp(t∗) has to be periodic of period

dividing k. This implies that p(t∗) = (v(t∗), w(t∗)) ∈ PQ is on either a left
or a right bone of period 2n | 2k.

So if the integer Neg ((qw(t) ◦ qv(t))
◦k) has an actual change at t = t∗,

then the path p(t) crosses a bone at t = t∗.
To end the proof of the lemma, suppose that the path p(t) only crosses

N bones. Then, for all k ∈ N,

| Neg(Q◦k
p1

) − Neg(Q◦k
p2

) |

would be bounded by N , contradiction with lemma 5.3. 2

5.2 The entropy and the cellular structure

Recall that either parameter space P ST and PQ has for each fixed value
of n an associated cellular complex structure, called P ST

n and PQ
n , respec-

tivelly. The two cell complexes are homeomorphic through the function η
defined in section 2.11.

The following lemma is valid for either complexes Pn = PST
n or Pn = PQ

n .
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Lemma 5.5. For any ε > 0, there exists n ∈ N such that, if p and p′ belong
to the same closed cell in Pn, then the corresponding maps satisfy:

| hp − hp′ |< ε

Proof. Suppose the contrary: there exists ε > 0 such that, for all n ∈ N,
there are two parameters pn and p′n in some common cell of Pn with:

| hpn − hp′n |≥ ε

By the compactness of P , we can choose a subsequence (kn)n ⊂ N such
that both (pkn

)n and (p′kn
)n converge in P :

pkn
−→ p as n → ∞

p′kn
−→ p′ as n → ∞

The entropy function is a continuous function of parameters in either
family (see for example [MT]). Using this and passing to the limit:

| hpkn
− hp′

kn
|≥ ε ⇒ | hp − hp′ |≥ ε

Moreover, the closed cells of Pn are nested as n increases (in other words,
the cell complex gets “finer” with larger values of n ).

Fix an arbitrary N ∈ N. For all kn ≥ N , pkn
and p′kn

are in the same
closed cell of Pkn

, hence in the same closed cell of PN .
In conclusion, for any arbitrary N ∈ N, p and p′ are in the same closed

cell of PN , yet:

| hp − hp′ |≥ ε > 0

contradiction with lemma ... 2

Lemma 5.6. Fix n ∈ N. In either parameter space P , the entropy function:

Pn −→ [0, log4]

p −→ h(gp)

restricted to any closed cell in Pn takes its maximum and minimum values
on the boundary of the cell ( more precisely on the boundary vertexes ).

Proof. In the case Pn = PST
n , the proof is a simple corollary of lemma

... We have to prove the identical statement for Pn = PQ
n .

For the fixed n ∈ N, suppose the lemma is not true for some closed cell
CQ

n ∈ PQ
n , that is : there exists p∗ = (v∗, w∗) ∈ int(CQ

n ) such that

h(Qp∗) = h(qw∗ ◦ qv∗) > hmax ,

where hmax is the maximum value of the entropy on the boundary δ(CQ
n ).
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Let

ε =
h(Qp∗) − hmax

2
≥ 0

By lemma 5.5, there exists m ∈ N such that the entropy variation on
all closed cells of P Q

m is less than ε. WLOG, we can take m > n. Call CQ
m

the closed cell in P Q
m such that p∗ ∈ CQ

m ⊂ CQ
n and consider any arbitrary

vertex pm = (vm, wm) of CQ
m.

As p∗, pm ∈ Cq
m, we automatically have:

| h(Qp∗) − h(Qpm) |< ε

But hmax + 2ε ≤ h(Qp∗) , so:

h(Qpm) > hmax

The homeomorphism of complexes η−1
m : PQ

m −→ PST
m carries ver-

texes to vertexes with the same entropy, edge to edge with the same in-
terval of entropies and 2-cells to 2-cells. So CST

m = η−1
m (CQ

m) will
be a 2-cell in P ST

m and qm = η−1
m (pm) will be a vertex of CST

m . Also,
η−1

n (δCQ
n ) = δ(CQ

n ) = δCST
n , so the maximum value hmax(δCQ

n ) of the
entropy on δCQ

n is the same as the maximum value hmax(δCST
n ) on CST

n .
Hence, in the stunted family:

h(STqm) = h(Qpm) > hmax(δCQ
n ) = hmax(δCST

n ) ,

contradiction, since the result has already been proved for P ST . 2

Corollary 5.7. For a fixed n ∈ N, the interval of entropy values realized by
any cell in PQ

n is the same as the interval of values for the corresponding
cell in PST

N .

For h0 ∈ [0, log4] we will use the following notation for the h0-isentrope
in either family:

iST (h0) = {(v, w) ∈ PST / h(stw ◦ stv) = h0}

iQ(h0) = {(v, w) ∈ PQ / h(qw ◦ qv) = h0}

For a fixed n ∈ N
∗, we also use the following notations:

NST
n (h0) =

⋃

{CST
n / CST

n ∈ PST
n , CST

n ∩ iST (h0) 6= Φ}

NQ
n (h0) =

⋃

{CQ
n / CQ

n ∈ PQ
n , CQ

n ∩ iQ(h0) 6= Φ}

Remarks : (1) Clearly: iST (h0) ⊂ NST
n (h0) and iQ(h0) ⊂ NQ

n (h0).
(2) Recall that for fixed n we have the homeomorphism of cell complexes:
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ηn : PST
n → PQ

n

If CST
n is a cell in P ST

n that touches iST (h0), then the corresponding cell
CQ

n = ηn(CST
n ) will touch iQ(h0) and conversely. This follows from corollary

5.7, which states that the interval of entropy values is the same in the two
closed cells CST

n and CQ
n .

Fix an entropy value h0 ∈ [0, log4] and an n ∈ N
∗.

Since NST
n (h0) and NQ

n (h0) are both unions of closed cells, they are
compact subsets of P ST and PQ, respectively. By the previous theorem,
NST

n (h0) is connected, so its image NQ
n (h0) = ηn(NST

n (h0) is also connected.
Hence we have the following:

Figure 18: The isentropes in PQ appear to be either arcs joining two points
in ∂PQ, or connected regions between such arcs, or a single point (the case
(v, w) = (1, 1) of entropy log 4.

Summary. For any n ∈ N
∗, the set NQ

n (h0) is compact, connected and
contains iQ(h0).

We have now a quite comprehensive description of the sets NQ
n (h0). To

obtain topological properties of iQ(h0), we try to relate it to the collection
{NQ

n (h0)}n∈N.
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Lemma 5.8.
⋂

NQ
n (h0) = iQ(h0)

Proof. Since iQ(h0) ⊂ NQ
n (h0) for all n ∈ N

∗, the inclusion iQ(h0) ⊂
⋂

NQ
n (h0) is trivial.
For the converse, suppose there exists (v, w) ∈

⋂

NQ
n (h0)\i

Q(h0). In
other words: for any arbitrary n ∈ N

∗, (v, w) is contained in a closed cell
CQ

n ⊂ PQ
n that touches iQ(h0), but such that (v, w) /∈ iQ(h0). For any such

closed cell CQ
n , there exists (v∗n, w∗

n) ∈ iQ(h0) ∩ CQ
n .

The sequence (v∗n, w∗
n)n∈N∗ satisfies in particular:

(1) (v∗n, w∗
n) 6= (v, w), ∀n ∈ N

∗

(2) h(qw∗

n
◦ qv∗

n
) = h0

We calculate:

| h(qw∗ ◦ qv∗) − h(qw ◦ qv) |= | h0 − h(qw ◦ qv) |

This contradicts the statement of lemma 5.5: the maximal variation of
the entropy over cells in P Q

n can be made arbitrarily small by increasing n.
2

Theorem 5.9. iQ(h0), the h0-isentrope in PQ, is connected.

Proof. iQ(h0) is an intersection of compact, connected sets in P Q,
therefore it is compact and connected. 2
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